(3 hours) Marks: 80

Note the following instructions.

- 1. Question No.1 is compulsory
- 2. Attempt any three questions from remaining five questions
- 3. Solve in total 4 questions
- 4. Assume suitable data wherever necessary, justify the same
- 5. Figures to the right indicate full marks.
- **1.a** Realize the following symmetric function using full adders and gates. [5]  $f(v,w,x,y,z) = S_{2,4}(v,w,x,y,z)$
- 1.b What is a Threshold logic element? Give its advantages and limitations [5]
- 1.c What is incompletely specified machines and how to specify using compatible [5] states?
- 1.d How to determine the state table of an unknown machine? [5]
- 2.a Use the Quine–McCluskey method to generate the set of essential prime implicants and to obtain the minimal expressions for the following functions.

$$T(w, x, y, z) = \sum (0,1,2,3,5,8,10,11,13,15)$$

**2.b** In the following state table, find the equivalence partition and the corresponding reduced machine in standard form. [10]

| 3                | NS, z |          |
|------------------|-------|----------|
| PS               | x = 0 | x = 1    |
| ${A}$            | F, 0  | B, 1     |
| $\boldsymbol{B}$ | G, 0  | A, 1     |
| BC               | B, 0  | C, 1     |
| D                | C, 0  | B, 1     |
| E                | D, 0  | A, 1     |
| F                | E, 1  | F, 1     |
| G                | E, 1  | G, 1     |
|                  |       | W .W1 19 |

- **3.a** (i) Give the properties of symmetric function.
  - (ii) Decomposed the following function and determine the functions F and  $\Phi$ .

[10]

$$f(v, w, x, y, z) = \sum_{\phi} (1,2,7,9,10,17,19,26,31) + \sum_{\phi} (0,15,20,23,25)$$
  
=F[\Phi(v,w,y),x,z]

**3.b** Find all the test vectors that detect faults *s-a*-0 and *s-a*-1 for all the input variable wires using the Fault table method.



**4.a** Determine whether the following function is a threshold function, and if it is find a weight-threshold vector.

$$f(v, w, x, y, z) = \sum (4,7,8,11,13,14,23,27,28,29,30)$$

56525

## Paper / Subject Code: 32207 / Elective - I Finite Automata Theory (DLOC)

- **4.b** Explan homing and synchronizing sequence techniques [10]
- **5.a** Find all the test vectors that detect input *A's-a-*0 by using the Path sensitization and the Boolean Differences method.



- **5.b** Explain the lattice of closed partitions of machine. [10]
- **6. a** Design a one-input one-output synchronous sequential circuit (Mealy Machine) [10] which produces an output symbol z = 1, whenever the "1101" overlap input sequence occurs. (Use only J-K Flip flops)
- **6. b** What are the components of ASM chart? Draw an ASM chart and state table for a [10] 2 bit up-down counter with mode control input.

56525 Page 2 of 2