Paper / Subject Code: 51202 / Electronics Devices and Circuits-I

QP: Code: 25071

(3 Hours)

[Total Marks: 80

Note: 1) Question no. 1 is compulsory.

- 2) Solve any three questions out of remaining.
- 3) Fig. to the right indicates maximum marks.
- 4) Assume suitable data wherever necessary but justify the same.

Q1. Solve any five.

(5x4 = 20)

a) Determine the value of Rc such that Vc = 5V and $\beta = 50$.

- b) State and explain Miller's Theorem.
- c) Design a self bias circuit using JFET for I_D = 3mA, V_{DD} = 20 V and V_{DS} = 0.6 V_{DD} . (I_{DSS} = 8 mA, V_P = -4V)
- d) Explain various types of capacitors.
- e) Determine the values of coupling capacitors C_{C1} and C_{C2} if r_{Π} = 1.5K Ω , β = 120 and f_L =20Hz.

f) Explain concept of zero temperature drift in JFET.

TURN OVER

QP Code: 25071

Q2. A) Calculate 1) IBO, ICO

2) g_m, r_∏

3) Small signal voltage gain

10

2

Q2 B) Explain the concept of LC filter in power supply circuit and hence derive

10

expression for ripple factor of LC filter.

Q3 A) Explain concept of shunt Zener regulator. For a shunt Zener regulator giving

10

output voltage of 10 V and load resistance varying from $5K\Omega$ to $10K\Omega$, Vin is varying between 18V to 22V.

Find Rs, Pzmax, Sv and Ro.

Assume $Rz = 4\Omega$ and $Izmin = 50\mu A$.

B) Determine I_{DQ} , V_{GSQ} , V_{DSQ} if $I_{DSS} = 9mA$ and $V_P = -3V$ for the circuit given below.

10

Q4 A) Design capacitive filter with FWR using two diodes with ripple factor less than 5%.

10

Output voltage is 24V and load current 200mA. The input line voltage of 230V/50Hz Is available.

B) Determine the values of biasing components for a CE configuration if Vcc = 12V,

10

 $V_{CE} = 6V$, Re=1K Ω , $V_{BE} = 0.6V$, $\beta = 180$ for the following circuit.

- i) Fixed bias without R_E
- ii) Voltage Divider bias with $V_{RE} = 10\%$ of Vcc and $S_1 = 8$

TURN OVER

QP Code: 25071

Q5 A) For JFET if
$$I_{DSS} = 6$$
 mA, $V_P = -6V$ rd = ∞ , Cgd = 4pF, Cgs = 6pF, Cds = 1pF 15

Determine i) V_{GSQ} ii) I_{DQ}

- iii)gmo
- iv) gm
- v) Midband voltage gain Av
- vi) Higher cut off frequency

B) Explain high frequency ∏ equivalent model of common emitter BJT.

5

Q6. Design single stage CS amplifier using mid-point biasing method for voltage gain of 12, 20

$$F_L = 20 \text{ Hz}, R_L = 10 \text{K}\Omega, V_0 = 3.5 \text{V}$$

(Use JFET parameters I_{DSS} = 7mA, V_P = -2.5V, gmo = $5600\mu \mho, \, rd$ = $50 K\Omega$)