Total Marks 80

(3 Hours)

N.B: 1) Question **number 1** is compulsory.

- 2) Attempt **any three** out of remaining.
- 3) Assume suitable data if **necessary** and justify the assumptions.
- 4) Figures to the **right** indicate full marks.
- 1 a) State whether unit step sequence is energy or power signal. Calculate Corresponding [05] energy or average power as the case may be.
 - b) Perform convolution operation between given function in time domain if $x(n)=\{2^{-n} -2 <=n <=2 \}$ 0 otherwise and

{ U Otherwise

h(n)=u(n+2)-u(n-2)

- c) Find the auto-correlation of the causal sequence $x(n)=\{2, 4, 6, 8\}$ [05]
- d) State the condition for stability of LTI system and determine for the given discrete time system [05]

 $h(n)=(2)^n u(n)+(0.5)^n u(n)$ is stable or not.

- 2 a) Determine whether or not the following signals are periodic. If periodic specify its fundamental period. [10]
 - i) $x1(n)=\sin(0.2\Pi n+3)$
 - ii) $x2(n)=\sin(0.5\Pi n)+5\cos(0.25n)$
 - b) i) If $x(n)=\{3, 4, 0, 6\}$ Find DFT X[k] [10]
 - ii) Using results obtained in i) and not otherwise find DFT of following sequences $x1(n)=\{6, 3, 4, 0\}$
- 3 a) Check whether following systems are

[10]

- i) Static or Dynamic
- ii) Linear or Nonlinear
- iii) Shift variant or Shift invariant
- iv) Causal or Noncausal

1

- i) $y(n)=n.x^2(n)$
- ii) y(n)=3x(n) + 5
- b) For $x(n)=\{1, 2, -1, 5, 0, 4\}$, Plot the following discrete time signals [10]

i) x(n+3)

- ii) x(-n-2)
- iii) x(n).u(n-1)
- iv) $x(n-2).\delta(n-2)$
- v) x(2n)
- 4 a) Find the DFT of the 8 point causal sequence using radix 2 DIT-FFT x(n)=(2, 1, 2, 1, 1, 2, 1, 2) [10]
 - b) Find the circular convolution of following causal sequences in time domain x1(n)={1, 2, 5} and x2(n)={4, 7} so that result of linear and circular convolution will be same.

Paper / Subject Code: 42101 / Digital Signal Processing

c)	Compare 128 point DFT and Radix 2- DIT-FFT with respect to the number of complex additions and multiplications required.	[05]
5 a)	In a LTI system the input $x(n)=\{1, 1, 3\}$ and impulse response is $h(n)=\{2, 3\}$. Determine the response of LTI system using radix-2 DIT-FFT method.	[10]
b)	Consider the 8 point sequence defined as 0<=n<=7 $x(n)=\{1,2,3,0,1,2,5,2\}$ with a 8 point DFT. Evaluate the following function $X[k]$ without computing DFT $\sum X[k]^2 $	[05]
c)	Determine 4 point DFT amd sketch the magnitude of DFT $x(n)=\{1, 1, 0, 0\}$	[05]
6 a)	Find Linear Convoltion of following causal signals using overlap add method. $x(n)=\{1, 2, 0, 1, 2, 3, 1, 1, 2, 1, 0, 3\}$ $h(n)=\{2, 2, 1\}$	[10]
b)	Write a detailed note on speech recognition.	[05]
c)	Compare Microprocessor with Digital Signal Processor.	[05]

Page 2 of 2