Time: 3 Hours Total Marks: 80

- N.B.: (1) Question No.1 is compulsory.
 - (2) Attempt any three questions from the remaining five questions.
 - (3) Make suitable assumptions wherever necessary but justify your assumptions.
 - a) Explain all three cases of Master method and Solve the following recurrence relations using master method.
 - i) $T(n) = 4T(n/2) + n^2$
 - ii) $T(n) = 2T(n/2) + n^2$
 - b) What are the various line segment properties?
 - c) Explain B-trees using suitable example.
- 2. a) Use Simplex method to solve the following objective function 12

maximize
$$z = 4x1 + 2x2 + 3x3$$

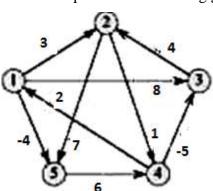
subject to the constraints

$$x1 + x2 + 2x3 \le 40$$

$$2x1 + 2x2 + 5x3 \le 30$$

$$4x1 + x2 + 2x3 \le 50$$

Where $x1 \ge 0$, $x2 \ge 0$, and $x3 \ge 0$.

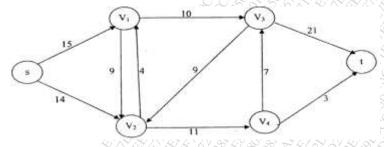

- b) Explain Dijkstra's Algorithm with help of an example
- 3. a) Insert the following data into red-black tree. Also explain each rotation used during 10 insertion

8

- b) What is Convex-hull. Explain the Graham's scan algorithm for finding the convex 10 hull.
- 4. a) Find an optimal parenthesization of a matrix-chain product whose sequence of 10 dimensions is <5, 10, 3, 12, 5, 50, 6>.

Paper / Subject Code: 42104 / Elective- II 1) Advance Algorithms

b) Apply Johnson's All pair shortest path in the following graph



10

10

20

- a) Explain the algorithm to find pair of intersecting lines with example
 - b) Find maximum flow for the following graph. 10

- 6. Explain the following with help of suitable example
 - The relabel to front algorithm i)
 - Binomial heap and its operations ii)

54427 Page 2 of 2