Paper / Subject Code: 53105 / 5) Soft Computing

		(3 Hours)			Max. Marks: 80			
N.B.:	(1) Question No. 1 is compulsory.				\$ \Z			
	(3) I	Attempt any Three questions out of remain Figures to the right indicate full marks. Assume suitable data if necessary .	ning]	Five ques	tions.			
0.1							₹ 5 5	
Q.1	a							
	b	Explain different activation functions in NN						
	C	Explain with example any 2 operators involved in simple GA						
	d	Explain different defuzzification techniques.						
Q.2	a	Design Hebb Net to implement logical AND function. Use bipolar inputs and targets.						
	b	Explain Error back propagation training Algorithm with the help of flowchart.						
Q.3		Evaloin architecture of Didirectional Associative Manner (DAM) Haves						
	a	Explain architecture of Bidirectional Associative Memory (BAM). How storage and retrieval performed in BAM.						
	b	Explain the single layer Neural Network architecture using Percentron model						
		with suitable activation function.					10	
			2000 2000 2000 2000 2000 2000 2000 200			100 L		
Q. 4	a	Two fuzzy relations are given by		8 9 5 6	cl.	c2		
		b1 b2 b3	S	b1	0.2	0.7		
		R al 0.4 0.5 0		b2	0.3	0.8		
		a2 0.2 0.8 0.2		b3	1.0	0.0	10	
		0.2 0.0 0.2	25/25/		S. D.			
		Find T as a max-min composition and max-product composition between the fuzzy relations.						
	b	Sketch the 5 layer ANFIS architecture mentioning the task of each layer.						
~ ~	Ŕ							
Q.5	a	Using Mamdani fuzzy model, Design a fuzzy logic controller to determine the						
	33.55	wash time of domestic washing machine. Assume that the inputs are dirt and grease on cloths. Use 3 descriptors for each input variables and five descriptors for output variables. Derive necessary membership function and required fuzzy						
	\$7.4°							
		rules for the application.						
	b	Explain Mamdani's and Zadeh's interpretation of fuzzy rule.						
Q.6	223	Write Short Note on:						
20 00 00 00 00 00 00 00 00 00 00 00 00 0	a	Explain perceptron convergence theorem						
	b	Binary Hopfield Network						
	C	Binary Hopfield Network Delta Learning Rule						
	d	McCulloh Pitts neuron model						
4.30	3,4	\$\\$\\$\\$\\$\\$\\$\\$\\$\					-	

57736 Page **1** of **1**