(3Hrs)

Max Marks: 80

N.B.: (1) Question No	. 1 i	is com	pulsory.
-----------------------	--------------	--------	----------

- (2) Attempt any **three** of remaining **five** questions.
- (3) Assume any suitable data if necessary and clearly state it.
- 1 (a) Define well posed learning problem. Hence, define robot driving learning problem. [05]
 - (b) Explain, in brief, Bayesian Belief networks. [05]
 - (c) Write short note on Temporal Difference Learning. [05]
 - (d) Explain procedure to construct decision trees. [05]
- 2. (a) Explain how support vector machine can be used to find optimal hyperplane to [10] classify linearly separable data. Give suitable example.
 - (b) Explain procedure to design machine learning system. [10]
- 3. (a) What is linear regression? Find the best fitted line for following example: [10]

i	x_i	y_i	\hat{y}_i
1	63	127	120.1
2	64	121	126.3
3	66	142	138.5
4	69	157	157.0
5	69	162	157.0
6	71	156	169.2
7	71	169	169.2
8	72	165	175.4
9	73	181	181.5
10	75	208	193.8

- (b) What is decision tree? How you will choose best attribute for decision tree [10] classifier? Give suitable example.
- 4 (a) Explain K-mean clustering algorithm giving suitable example. Also, explain how K- [10] mean clustering differs from hierarchical clustering.
 - (b) What is kernel? How kernel can be used with SVM to classify non-linearly [10] separable data? Also, list standard kernel functions.

Paper / Subject Code: 52701 / Elective- III 1) Machine Learning

5.	(a)	What is Q-learning? Explain algorithm for learning Q.	[10]
	(b)	Explain following terms with respect to Reinforcement learning: delayed rewards,	[10]
		exploration, and partially observable states.	
6	Writ	e short notes on	
	(a)	Soft margin SVM	[05]
	(b)	Radial Basis functions	[05]
	(c)	Independent Component Analysis	[05]
	(d)	Logistic Regression	[05]
			>
