
Q. P. Code: 27087

[Time: Three Hours] [Marks:80]

- **N.B.:** (1) Question No.1 is compulsory.
 - (2) Attempt any three out of remaining questions.
 - (3) Assume suitable data wherever required.
- Q.1. Attempt the following

(20)

- a) Differentiate between Open Loop and Closed Loop Control System.
- b) Define the terms (i) Zero input response (ii) Zero state response.
- c) Define Absolute, Relative and Robust Stability of the System.
- d) What are the drawbacks of transfer function model?
- Q.2 a. Find the transfer function C(S)/R(S) of the system Shown in the figure below. (10)

b. Sketch the root locus for the below given System.

$$G(S)H(S) = \frac{K}{s(s+3)(s+5)}$$

Q. 3 a. Obtain the State Variable model of the transfer function given below. (10)

$$T(S) = \frac{s^2 + 3s + 3}{s^3 + 2s^2 + 3s + 1}$$

- b. Explain Controllability and Observability analysis of LTI System using

 Suitable example. (10)
- Q.4 a. Use the Routh Stability Criteria to determine the range of 'K' for stability of unity feedback system whose Open Loop transfer function is given below.

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

[TURN OVER]

Q. P. Code: 27087

$$G(s)H(s) = \frac{K(s+1)}{s^2(s+2)(s+4)}$$

Using Polar Plot determine the range of 'K' for stability. Verify result by Rouths Criteria.

Q.5 a. Draw the Bode diagram for the transfer function (10)

$$G(s) = \frac{64(s+2)}{s(s+0.5)(s^2+3.2s+64)}$$

Determine G_m, P_m, W_{gc} and W_{pc}. Comment on the Stability.

b. For the given transfer function find Tp, % MP, Ts, and Tr. (10)

$$G(s) = \frac{100}{(s^2 + 15s + 100)}$$

- Q.6 a. Explain the concept of Neuro-Fuzzy adaptive control system. Explain one method of adaptive control. (10)
 - b. Derive the expression for solution of homogeneous equation. (10)
