Q. P. Code: 24492

Duration: 3 Hours Total Marks: 80

N.B.: 1) Q.1. is compulsory.

2) Attempt any three from the remaining.

Q.1. a) Show that the set
$$\{e^x, xe^x, x^2e^x\}$$
 is linearly independent in $C^2(-\infty, \infty)$. (5)

b) Show that
$$\int_{C} \log z dz = 2\pi i$$
, where C is the unit circle in the z-plane. (5)

d) Find the extremal of
$$\int_{x_1}^{x_2} \left(y^2 + y'^2 + 2ye^x \right) dx$$
 (5)

Q.2. a) If
$$A = \begin{bmatrix} 3/2 & 1/2 \\ 1/2 & 3/2 \end{bmatrix}$$
, find e^A (6)

b) Evaluate
$$\int_{0}^{\pi} \frac{d\theta}{3 + 2\cos\theta}$$
 (6)

c) Find the singular value decomposition of
$$\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 (8)

Q.3. a) Find the extremal of
$$\int_{0}^{\pi} (y'^{2} - y^{2}) dx$$
 given $y(0) = 0$, $y(\pi) = 0$ (6)

b) Verify Cayley Hamilton theorem for
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$$
 and hence find $A^{-1} & A^{4}$ (6)

c) Expand
$$f(x) = \frac{1}{(z-1)(z-2)}$$
 in the regions (i) $1 < |z-1| < 2$ (ii) $|z| < 1$ (8)

Q.4. a) Construct an orthonormal basis of \mathbb{R}^3 using Gram Schmidt process to $S = \{(3,1),(2,3)\}$ (6)

b) Find the extremum of
$$\int_{x_0}^{x_1} (2xy + y'''^2) dx$$
. (6)

c) Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy + 4xz - 2zy$ to canonical form and hence, find its rank, index and signature and value class. (8)

Q. P. Code: 24492

Q.5. a) Using Residue theorem evaluate
$$\int_{c} \frac{z^{2}}{(z-1)^{2}(z+1)} dz$$
 where C is $|z|=2$. (6)

b) Find the linear transformation Y=AX which carries
$$X_1 = (1,0,1)', X_2 = (1,-1,1)', X_3 = (1,2,-1)'$$
 onto $Y_1 = (2,3,-1)', Y_2 = (3,0,-2)', Y_3 = (-2,7,1)'$ (6)

c) Check whether $V = \mathbb{R}^2$ is a vector space with respect to the operations

$$(x_1,0) + (x_2,0) = (x_1 + x_2,0); k(x_1,0) = (kx_1,0)$$

Q.6.a) Obtain Taylor's series expansion for
$$f(x) = \frac{2z^3 + 1}{z(z+1)}$$
 about $z = i$ (6)

b) Let
$$W = span \left\{ (0,1,0), \left(\frac{-4}{5}, 0, \frac{3}{5} \right) \right\}$$
, Express $w = (1,2,3)$ in the form of $w = w_1 + w_2$ where

$$w_1 \in W \& w_2 \in W^{\perp}$$
 (6)

c) Using Rayleigh- Ritz method, solve the boundary value problem $I = \int_{1}^{1} (2xy - y^2 - y'^2) dx$;

given
$$y(0) = y(1) = 0$$
 (8)
