Paper / Subject Code: 51205 / Electronics Instrumentation and Control

26-Nov-2019 1T01023 - S.E.(Electronic & Telecommunication Engineering)(SEM-III)(Choice Base) / 51205 - Electronics Instrumentation and Control 77143

(3hours) Marks:80

N.B:

- (1) Attempt four questions, question no:1 is Compulsory.
- (2) Assume suitable data wherever required.
- (3) Answers to the questions should be grouped together.
- (4) Figure to the right of question indicates full marks.

1. Attempt all: 20M

- (a) Derive an expression for the resistance using Wheatstone bridge for balanced condition
- (b) Find the transfer function of the given electrical network

- (c) Explain various criteria for selection of transducers
- (d) Compare analog and digital Data Acquisition system.
- (e) Check whether the given system is stable $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 15 = 0$

2.

- (a) Describe how Q meter is used for measurement of low impedance. Also List the various sources of errors in Q meter.
- (b) Using Block diagram reduction techniques, find closed loop transfer function 10

Paper / Subject Code: 51205 / Electronics Instrumentation and Control

3

(a) Sketch the root locus of a unity feedback control system with $G(s) = \frac{K}{s(s+4)(s+6)}$ and determine the value of k for marginal stability

(b) A Unity feedback control system has $G(S) = \frac{10}{s(1+0.4s)(1+0.1s)}$, H(s)=1 10 Draw the bode plot and predict stability

4

- (a) Explain basic telemetry system.
- (b) For Unity Feedback system $G(s) = \frac{k}{s(1+0.4s)(1+0.25s)}$, find range of K , marginal value of K and frequency of sustained oscillation. Using Routh's criterion.
- (c) Explain with neat diagram working principle of LVDT and Explain advantages and disadvantages of LVDT . 10

5

(a) Using Mason's Gain formula evaluate the transfer function (c(S))/(R(s)) 10

(b) Explain Kelvin's double Bridge and its application for measurement of low resistance and derive expression for unknown resistance.

6

(Ba)

- (i) Compare the temperature transducers with respect to their characteristics and measurement range 05
- (ii) How stability of the system can be analyzed using Nyquist criterion 05
- (iii) Explain Digital Data Acquisition system 05
- (iv) A unity feedback system has open loop transfer function as $\frac{(1+0.4s)}{s(s+0.6)}$.
 - Obtain Unit step Response, Rise Time and Peak overshoot 05