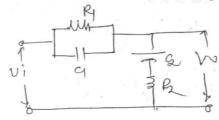
Paper / Subject Code: 51205 / Electronics Instrumentation and Control

S.E. SEM III / ELTL / CHOICE BASED / NOV 2018 / 17.12.2018

Q. P. Code: 22929

80

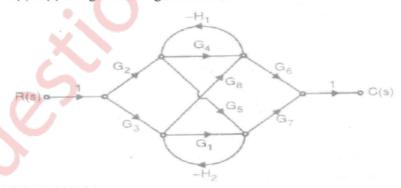

Total Marks:

Instructions – i) Questions 1 is Compulsory

- ii) Out of remaining questions attempt any three questions
- Iii) Assume suitable additional data if required.
- iv) Figures in the bracket to the right hand side indicate full marks.

Q.1 Solve any five

- a) Describe how Q Meter is used for measurement of low impedance. (04)
- b) Explain various criteria for selection of transducers. (04)
- c) Give basic block diagram of telemetry system and explain each component. (04)
- d) Find transfer function for following system (04)



- e) Explain concept of stability, absolute stability and conditional stability. (04)
- f) Draw polar plot of (04)

$$G(s)H(s) = \frac{14}{s(s+1)(s+2)}$$

Q.2 a) 1)Find C(s)/R(s) using Mason's gain formula

(10)

2) A unity feedback system has

(05)

 $G(s) = \frac{K}{S(s+2)(1+0.5S)}$. Find steady state error if r(t)=3t and K=4.Also calculate K for e_{ss}=0.4.

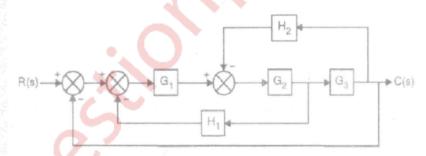
Q. P. Code: 22929

Q.2 b) What are the various sources of errors in Q meter?

(05)

Q.3 a) A unity feedback system has

(10)


$$G(S) = \frac{K}{S(S+1)(S+2)(S+4)}$$

Find the following using Routh -Hurwitz's criterion

- 1) the range of K for stability
- 2)The value of K for marginal stability
- Q.3 b) Explain with neat diagram principle of operation of LVDT. An LVDT (10) produces output of 5V; when the core displacement is 20mm from zero postion. Calculate core displacement when the output is 2.5V.
- Q.4 a) Draw the Bode Plot for a system having G(s) H(s) = 100/s(s+1)(s+2) Find-
 - (a) Gain Margin
 - (b) Phase Margin
 - (c) Gain Crossover freq.
 - (d) Phase crossover freq.
- Q.4 b) Derive expression for inductance measurement using Hey Bridge. (05)
- Q.5 a) Sketch root locus for the following transfer function (10)

$$G(S)H(s) = \frac{K}{S(S+4)(S+6)}$$

- Q.5 b) Explain Kelvin's double bridge and its application in low resistance measurement and derive expression for unknown resistance. (10)
- Q.6 a) Find C(s)/R(s) for the given system (10)

- Q.6 b) 1) Define accuracy, precision and sensitivity with the help of examples. (05)
 - 2) Draw generalized block diagram of data acquisition system and explain (05) the blocks.
