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To my parents



It is customary to begin courses in mathematical engineering by ex-
plaining that the lecturer would never trust his life to an aeroplane
whose behaviour depended on properties of the Lebesgue integral.
It might, perhaps, be just as foolhardy to fly in an aeroplane de-
signed by an engineer who believed that cookbook application of
the Laplace transform revealed all that was to be known about its
stability.

T.W. Kérner

Fourier Analysis
Cambridge University Press
1988
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Preface

The Laplace transform is a wonderful tool for solving ordinary and
partial differential equations and has enjoyed much success in this
realm. With its success, however, a certain casualness has been bred
concerning its application, without much regard for hypotheses and
when they are valid. Even proofs of theorems often lack rigor, and
dubious mathematical practices are not uncommon in the literature
for students.

In the present text, I have tried to bring to the subject a certain
amount of mathematical correctness and make it accessible to un-
dergraduates. To this end, this text addresses a number of issues that
are rarely considered. For instance, when we apply the Laplace trans-
form method to a linear ordinary differential equation with constant
coefficients,

any(ﬂ) + an—ly(n_l) 4+ +ay = f(t)'

why is it justified to take the Laplace transform of both sides of
the equation (Theorem A.6)? Or, in many proofs it is required to
take the limit inside an integral. This is always frought with danger,
especially with an improper integral, and not always justified. T have
given complete details (sometimes in the Appendix) whenever this
procedure is required.

ix
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Furthermore, it is sometimes desirable to take the Laplace trans-
form of an infinite series term by term. Again it is shown that
this cannot always be done, and specific sufficient conditions are
established to justify this operation.

Another delicate problem in the literature has been the applica-
tion of the Laplace transform to the so-called Dirac delta function.
Except for texts on the theory of distributions, traditional treatments
are usually heuristic in nature. In the present text we give a new and
mathematically rigorous account of the Dirac delta function based
upon the Riemann-Stieltjes integral. It is elementary in scope and
entirely suited to this level of exposition.

One of the highlights of the Laplace transform theory is the
complex inversion formula, examined in Chapter 4. It is the most so-
phisticated tool in the Laplace transform arsenal. In order to facilitate
understanding of the inversion formula and its many subsequent
applications, a self-contained summary of the theory of complex
variables is given in Chapter 3.

On the whole, while setting out the theory as explicitly and
carefully as possible, the wide range of practical applications for
which the Laplace transform is so ideally suited also receive their
due coverage. Thus I hope that the text will appeal to students of
mathematics and engineering alike.

Historical Summary. Integral transforms date back to the work of
Léonard Euler (1763 and 1769), who considered them essentially in
the form of the inverse Laplace transform in solving second-order,
linear ordinary differential equations. Even Laplace, in his great
work, Théorie analytique des probabilités (1812), credits Euler with
introducing integral transforms. It is Spitzer (1878) who attached
the name of Laplace to the expression

b
y= [ ™ ¢(s)ds

employed by Euler. In this form it is substituted into the differential
equation where y is the unknown function of the variable x.

In the late 19th century, the Laplace transform was extended to
its complex form by Poincaré and Pincherle, rediscovered by Petzval,



Preface Xl

and extended to two variables by Picard, with further investigations
conducted by Abel and many others.

The first application of the modern Laplace transform occurs in
the work of Bateman (1910), who transforms equations arising from
Rutherford’s work on radioactive decay

ar

- = _)‘-iPr
at

by setting

p(x) = /O e MP(t)dt

and obtaining the transformed equation. Bernstein (1920) used the
expression

fo= [ o

calling it the Laplace transformation, in his work on theta functions.
The modern approach was given particular impetus by Doetsch in
the 1920s and 30s; he applied the Laplace transform to differential,
integral, and integro-differential equations. This body of work cul-
minated in his foundational 1937 text, Theorie und Anwendungen der
Laplace Transformation.

No account of the Laplace transformation would be complete
without mention of the work of Oliver Heaviside, who produced
(mainly in the context of electrical engineering) a vast body of
what is termed the “operational calculus” This material is scattered
throughout his three volumes, Electromagnetic Theory (1894, 1899,
1912), and bears many similarities to the Laplace transform method.
Although Heaviside's calculus was not entirely rigorous, it did find
favor with electrical engineers as a useful technique for solving
their problems. Considerable research went into trying to make the
Heaviside calculus rigorous and connecting it with the Laplace trans-
form. One such effort was that of Bromwich, who, among others,
discovered the inverse transform

1 y+ioo
X(t) = o / e“x(s)ds
v

—100

for y lying to the right of all the singularities of the function x.
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Basic
~ Principles

CHAPTER

Ordinary and partial differential equations describe the way certain
quantities vary with time, such as the current in an electrical circuit,
the oscillations of a vibrating membrane, or the flow of heat through
an insulated conductor. These equations are generally coupled with
initial conditions that describe the state of the system at time t = 0.

A very powerful technique for solving these problems is that of
the Laplace transform, which literally transforms the original differ-
ential equation into an elementary algebraic expression. This latter
can then simply be transformed once again, into the solution of the
original problem. This technique is known as the “Laplace transform
method” Tt will be treated extensively in Chapter 2. In the present
chapter we lay down the foundations of the theory and the basic
properties of the Laplace transform.

1.1 The Laplace Transform

Suppose that f is a real- or complex-valued function of the (time)
variable t > 0 and s is a real or complex parameter. We define the

1



72 1. Basic Principles

Laplace transform of f as

F(s) = L(f(D) = f e (1) dt

0

T
: —St

=lim | ef(d (1.1)
whenever the limit exists (as a finite number). When it does, the
integral (1.1)is said to converge. If the limit does not exist, the integral
is said to diverge and there is no Laplace transform defined for f. The
notation £(f) will also be used to denote the Laplace transform of
f, and the integral is the ordinary Riemann (improper) integral (see
Appendix).

The parameter s belongs to some domain on the real line or in
the complex plane. We will choose s appropriately so as to ensure
the convergence of the Laplace integral (1.1). In a mathematical and
technical sense, the domain of s is quite important. However, in a
practical sense, when differential equations are solved, the domain
of s is routinely ignored. When s is complex, we will always use the
notation s = x + iy.

The symbol L is the Laplace transformation, which acts on
functions f = f(t) and generates a new function, F(s) = .C(f (t)).

Example 1.1. Iff(t)=1 fort > 0, then

L(f(1) = /0 e M1dt

) efst T
= lim
T— 00 =S |

. e=st 1
= }5?0( — g) (1.2)
1
T s

provided of course that s > 0 (if s is real). Thus we have

L£(1) :% (s > 0). (1.3)
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If s < 0, then the integral would diverge and there would be no re-
sulting Laplace transform. If we had taken s to be a complex variable,
the same calculation, with Re(s) > 0, would have given £(1) = 1/s.

In fact, let us just verify that in the above calculation the integral
can be treated in the same way even if s is a complex variable. We
require the well-known Euler formula (see Chapter 3)

¢ = cosf +1i siné, 0 real, (1.4)

and the fact that |¢?| = 1. The claim is that (ignoring the minus sign
as well as the limits of integration to simplify the calculation)

@St
Sdt = — 1.5
[era=1, (15)

for s = x 4+ iy any complex number # 0. To see this observe that

/ etdt = / e gy

= f@’“ cosytdt+i/e’“ sinyt dt

by Euler’s formula. Performing a double integration by parts on both
these integrals gives

ext
/ eldt = m [(x cosyt + ysinyt) +i(xsinyt — y cos yt)].

Now the right-hand side of (1.5) can be expressed as

est e(x-i—iy)t

S X+ 1y

e“(cosyt + isinyt)(x — iy)
X2 + y?

ext

= m [(x cosyt +ysinyt) +i(xsinyt — y cos yt)],
which equals the left-hand side, and (1.5) follows.

Furthermore, we obtain the result of (1.3) for s complex if we
take Re(s) = x > 0, since then

lim e = lime ™ =0
T—>00 T—>00

)
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killing off the limit term in (1.3).

Let us use the preceding to calculate L(coswt) and L(sin wt)
(w real).

Example 1.2. We begin with

o
£(eiwt) — /(; e—steiwtdt

glio=s)t T

= lim -
T—X 1w — S
0
1
el —,
s —iw
since lim,_, o [€“7€™7| = lim, 00 6" = 0, provided x = Re(s) >

0. Similarly, £(e™") = 1/(s + iw). Therefore, using the linearity
property of £, which follows from the fact that integrals are linear
operators (discussed in Section 1.6),

L iwt L —lwt iwt —lwt
() + L) :ﬁ(&) _ L(coswn),
2 2
and consequently,
L t ! ! + ! > 1.6
cos =- = . .
(cos ) 2\s—iw s+iw 82 + w? (1-6)
Similarly,
1 1 1 w
L(sinwt) = — — = R 0).
(sinwr) 21 <s—ia) s+ia)) §2 + w? ( es) > )

(1.7)

The Laplace transform of functions defined in a piecewise
fashion is readily handled as follows.

Example 1.3. Let (Figure 1.1)
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19) 1 t  FIGURE 1.1

From the definition,

ciro) = [ s

0

1 T
= / te”%dt + lim e Sat
0

T—> 00 1
te—st 1 1 1 et T
= + - / e Sdt + lim
-s |, sJo 00 —§ |
1—¢5
=— (Re(s) > 0).

Exercises 1.1

1. From the definition of the Laplace transform, compute E(f )]
for

(@) f(1) = 4t (b) f(t) =¢*
(c) f(t) = 2cos 3t (d) f(t) =1 — cos wt
(e) f() = te* () f(1) = ¢ sint
Li>a sinowt 0 < t< —
(g)f(t)z{Ot;a ®™fO=y o ox_

w
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) 2t<1
(l)f(f)={

et >1.

2. Compute the Laplace transform of the function f(t) whose graph
is given in the figures below.

f(t) f(t)
1 (a) 1 (b)
0 1 t 19) 1 2t
FIGURE E.1 FIGURE E.2

1.2 Convergence

Although the Laplace operator can be applied to a great many
functions, there are some for which the integral (1.1) does not
converge.

Example 1.4. For the function f(t) = e,
T T
lim | e %e’dt = lim | ¢ at = oo
T—>00 0 T—> 00 0
for any choice of the variable s, since the integrand grows without
bound as T — oo.

In order to go beyond the superficial aspects of the Laplace trans-
form, we need to distinguish two special modes of convergence of
the Laplace integral.

The integral (1.1) is said to be absolutely convergent if

hm/ le™*f ()| dt
T—>00 0

exists. If £(f (1)) does converge absolutely, then

/

/{ ’ e Sf(adt

/

< / e (ol — 0




Exercises 1.2 7

ast — oo, forall " > 7. This then implies that L(f (t)) also converges
in the ordinary sense of (1.1).*

There is another form of convergence that is of the utmost im-
portance from a mathematical perspective. The integral (1.1) is said
to converge uniformly for s in some domain 2 in the complex plane if
for any ¢ > 0, there exists some number 7y such that if ¢ > 7, then

/r h e Sfadt

for all s in Q. The point here is that 7y can be chosen sufficiently
large in order to make the “tail” of the integral arbitrarily small,
independent of s.

<&

Exercises 1.2

1. Suppose that f is a continuous function on [0, 00) and [f(t)| <
M < oofor0 <t < oo.

(a) Show that the Laplace transform F(s) = L(f(t)) con-
verges absolutely (and hence converges) for any s satisfying
Re(s) > 0.

(b) Show that L(f(1)) converges uniformly if Re(s) > xo > 0.
(¢) Show that F(s) = L(f(f)) — 0 as Re(s) — 0.

2. Let f(t) = ¢' on [0, 00).

(a) Show that F(s) = L(¢") converges for Re(s) > 1.
(b) Show that L(e") converges uniformly if Re(s) > xp > 1.

*Convergence of an integral

/{: h () dt

is equivalent to the Cauchy criterion:

’

/ p(tH)dt - 0 as T—>o00, T >T
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(c¢) Show that F(s) = L(e") — 0 as Re(s) — 0.

3. Show that the Laplace transform of the function f(t) = 1/t,t > 0
does not exist for any value of s.

1.3 Continuity Requirements

Since we can compute the Laplace transform for some functions and
not others, such as e(tz), we would like to know that there is a large
class of functions that do have a Laplace tranform. There is such a
class once we make a few restrictions on the functions we wish to
consider.

Definition 1.5. A function f has a jump discontinuity at a point
to if both the limits

lim f(5) =f(t;)  and  lim f() = f(t5)

t—t; t—t]

exist (as finite numbers) and f(t, ) # f(t5). Here, t — t; and t — t;
mean that t — t, from the left and right, respectively (Figure 1.2).

Example 1.6. The function (Figure 1.3)

1
f(@Z:

f(®)

0 to ! FIGURE 1.2
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f(t) ;
0 3 t
! FIGURE 1.3
f(t)
1
o) t FIGURE 1.4

has a discontinuity at t = 3, but it is not a jump discontinuity since
neither lim,_,3- f(t) nor lim,_, 3+ f(t) exists.

Example 1.7. The function (Figure 1.4)
2
e 2t>0
ft) =
0 t<O0
has a jump discontinuity at ¢t = 0 and is continuous elsewhere.
Example 1.8. The function (Figure 1.5)
0 t<0
f) =

cost t >0

is discontinuous at t = 0, but lim,_, ¢+ f(¢) fails to exist, so f does not
have a jump discontinuity at t = 0.
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f)
1,

—14 FIGURE 1.5

FIGURE 1.6

The class of functions for which we consider the Laplace
transform defined will have the following property.

Definition 1.9. A function f is piecewise continuous on the in-
terval [0, 00) if (i) lim,— o+ f(t) = f(0T) exists and (ii) f is continuous
on every finite interval (0, b) except possibly at a finite number
of points 11, 72, ..., T, in (0, b) at which f has a jump discontinuity
(Figure 1.6).

The function in Example 1.6 is not piecewise continuous on
[0, 00). Nor is the function in Example 1.8. However, the function
in Example 1.7 is piecewise continuous on [0, 00).

An important consequence of piecewise continuity is that on
each subinterval the function f is also bounded. That is to say,

|f(t)|§Mi, T <t < Tig1, 1=1,2...,.n—1

)

for finite constants M;.
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In order to integrate piecewise continuous functions from 0 to b,
one simply integrates f over each of the subintervals and takes the
sum of these integrals, that is,

b T T2 b
/ f(t)dt:/ f(t)dt—l—/ f(t)dt+---+/ f(t)dt.
0 0 T Tn
This can be done since the function f is both continuous and

bounded on each subinterval and thus on each has a well-defined
(Riemann) integral.

Exercises 1.3

Discuss the continuity of each of the following functions and locate
any jump discontinuities.

1
1. f(t) = ——
f® 1+t1
Z.g(t):tsin? (t#0)
t t<l1
3. h(¥) = 1
t>1
14 t2
sinhtt 0
4. i(t) = t 7
1 t=0

, 1 1
5. ](t)z?smh? (t#0)

l—e*ft 0
6. k(t) = t 7
0 =0
1 2na<t<(@n+1l)a
I(t) = a>0n=01,2 ...
-1 (Zn+la=<t< (2n+2a

t
8. m(t) = |:—:| +1,fort > 0,a > 0, where [x] = greatest integer < x.
a
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1.4 Exponential Order

The second consideration of our class of functions possessing a well-
defined Laplace transform has to do with the growth rate of the
functions. In the definition

o) = [ e

when we takes > 0 (or Re(s) > 0) the integral will converge as long
as f does not grow too rapidly. We have already seen by Example 1.4
that f(t) = €' * does grow too rapidly for our purposes. A suitable rate
of growth can be made explicit.

Definition 1.10. A function f has exponential order « if there
exist constants M > 0 and « such that for some t, > 0,

If ()] < Me™, t >t

Clearly the exponential function e* has exponential order « = a,
whereas t" has exponential order « for any @ > 0 and any n € N
(Exercises 1.4, Question 2), and bounded functions like sint, cost,
tan~!t have exponential order 0, whereas e' has order —1. How-
ever, ¢ does not have exponential order. Note that if 8 > «, then
exponential order « implies exponential order g, since e* < e,
t > 0. We customarily state the order as the smallest value of « that
works, and if the value itself is not significant it may be suppressed
altogether.

Exercises 1.4

1. If f; and f, are piecewise continuous functions of orders o and
B, respectively, on [0, 00), what can be said about the continuity
and order of the functions

(1) cafi + cofs, ¢, c; constants,
@i f-g?
. Show that f(t) = ¢" has exponential order « for any o« > 0, n € N.
3. Prove that the function g(t) = ¢ does not have exponential order.

N
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1.5 The Class £

We now show that a large class of functions possesses a Laplace
transform.

Theorem 1.11. If f is piecewise continuous on [0, 00) and of exponen-
tial order «, then the Laplace transform L(f) exists for Re(s) > «a and
converges absolutely.

Proor. First,
fHl < Mie”,  t>1,

for some real a. Also, f is piecewise continuous on [0, o] and hence
bounded there (the bound being just the largest bound over all the
subintervals), say

|f(t)| =< Mz, 0<tx< to.

Since ¢* has a positive minimum on [0, ty], a constant M can be
chosen sufficiently large so that

If ()] < Me*, t>0.

Therefore,

/ le™S'f(b)ldt <M / e T ay
0 0

Me—(x—ot)t T
—(x —a) |

M M 6—(x—a)t

T x—a  x—a

Letting Tt — oo and noting that Re(s) = x > « yield

o M
f le™"f()ldt < ——. (1.8)
0 X — U

Thus the Laplace integral converges absolutely in this instance (and
hence converges) for Re(s) > o. O
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Example 1.12. Let f(t) = ¢¥, a real. This function is continuous
on [0, 00) and of exponential order a. Then

o0
L) = /0 e Ste™dt

o0
= / e gy
0

e~ (s—ay S

—(s—a)l,

The same calculation holds for a complex and Re(s) > Re(a).

S (Re(s) > a).

S§—a

Example 1.13. Applying integration by parts to the function f(t) =
t (t > 0), which is continuous and of exponential order, gives

o.¢]
L(t) = / te~Sdt
0

o0 1 o0
+ - / e Sdr
0 S Jo

= %E(l) (provided Re(s) > 0)

—t 6—8[’

N

1
S—Z.

Performing integration by parts twice as above, we find that
(0.¢]
L(t*) = / e St dt
0
2
=5 (Re(s) > 0).

By induction, one can show that in general,

Sn—H

L") =

(Re(s) > 0) (1.9)

forn=1, 2, 3, .... Indeed, this formula holds even for n = 0, since
0! = 1, and will be shown to hold even for non-integer values of n
in Section 2.1.

Let us define the class L as the set of those real- or complex-
valued functions defined on the open interval (0, 00) for which the
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Laplace transform (defined in terms of the Riemann integral) exists
for some value of s. It is known that whenever F(s) = L(f (t)) exists
for some value sy, then F(s) exists for all s with Re(s) > Re(sy), that
is, the Laplace transform exists for all s in some right half-plane (cf.
Doetsch [2], Theorem 3.4). By Theorem 1.11, piecewise continuous
functions on [0, 00) having exponential order belong to L. However,
there certainly are functions in L that do not satisfy one or both of
these conditions.

Example 1.14. Consider
£(t) = 2te" cos(e").

Then f(t) is continuous on [0, 00) but not of exponential order.
However, the Laplace transform of f(t),

L(f(1) = /000 e 2t e cos(e)dt,

exists, since integration by parts yields

L(f(1) = e~ sin(e") Zo+ sf ¢ sin(e") dr
0

= —sin(1) + s L( sin(etz)) (Re(s) > 0).

and the latter Laplace transform exists by Theorem 1.11. Thus we

have a continuous function that is not of exponential order yet

nevertheless possesses a Laplace transform. See also Remark 2.8.
Another example is the function

1
f(t) = 7 (1.10)

We will compute its actual Laplace transform in Section 2.1 in the
context of the gamma function. While (1.10) has exponential order
a =0 (If()l <1,t = 1), it is not piecewise continuous on [0, 50)
since f(t) — oo ast — 07, that is, t = 0 is not a jump discontinuity.

Exercises 1.5

1. Consider the function g(t) = te sin(etz).
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(a) Is g continuous on [0, 00)? Does g have exponential order?

(b) Show that the Laplace transform F(s) exists for Re(s) > 0.

(c) Show that g is the derivative of some function having
exponential order.

. Without actually determining it, show that the following func-
tions possess a Laplace transform.
sint 1 —cost

@ — (b)

t t
(c) t*sinht

. Without determining it, show that the function f, whose graph is
given in Figure E.3, possesses a Laplace transform. (See Question
3(a), Exercises 1.7.)

f@)

41 R

FIGURE E.3

1.6 Basic Properties of the Laplace
Transform

Linearity. One of the most basic and useful properties of the
Laplace operator L is that of linearity, namely, if fi € L for Re(s) > «,
f2 € L for Re(s) > B, then f1 + f, € L for Re(s) > max{c, B}, and

E(lel + szz) = Clﬁ(fl) + Czﬁ(fz) (111)
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for arbitrary constants ¢, ¢;.
This follows from the fact that integration is a linear process, to
wit

)

/ C_St (lel (t) + szz(t)) dt
0
=c fo e h(dt+ ¢, /0 e hdt (A, f2 €L).

Example 1.15. The hyperbolic cosine function
ea)t + e—wt
2

describes the curve of a hanging cable between two supports. By
linearity

cosh wt =

L(coshwt) = %[E(@“’t) + L(e™)]

1( 1 1 )
= - +
2\s—w SsSHow

N

SZ—(,()Z.

Similarly,

§° —w

Example 1.16. If f(t) = ay + ait + --- + a,t" is a polynomial of
degree n, then

L(f() = Zakﬁ(t )
ak!
- Z S:—H
by (1.9) and (1.11).

Infinite Series. For an infinite series, Y oo, ant", in general it is not
possible to obtain the Laplace transform of the series by taking the
transform term by term.
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Example 1.17.

nt2n

fy=e" = Z( 1) , —00 < t< 00.

Taking the Laplace transform term by term gives

(D" ooy N (CD" @)
Z n! E(tz ) = Z n! 82n+1

n=0 n=0
_ 1 & (-D)'2n)---m+2)(n+ 1)
- Z SZn
Applying the ratio test,
2(2 1
lim ¥ — fim 2@n+1) = 00,
n—oo | u, n—00 |s]2

and so the series diverges for all values of s.
2 . . 42 . .
However, L(e™") does exist since ¢™" is continuous and bounded
on [0, 00).

So when can we guarantee obtaining the Laplace transform of an
infinite series by term-by-term computation?

Theorem 1.18. If

=) ant"
n=0

converges for t > 0, with

Ko

lan| <
n!

)

for all n sufficiently large and « > 0, K > 0, then

n!
L(f) = Zanﬁ(t )= Z e (Re(s) > a).

Proor. Since f(t) is represented by a convergent power series, it is
continuous on [0, 00). We desire to show that the difference

N
(f(t) -y ant”)
n=0

L(f(t) — Zanﬁ(t )| =
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N
<L, (‘f(t) — Y ant" )
n=0

converges to zero as N — 0o, where /Jx(h(t)) = fooo e Mh(t)dt, x =
Re(s).
To this end,

o0
E an t)’l

N
f( = ant”
n=0

n=N-+1
£
k3 @
n=N+1 n!
N
at)n
=K ot Z ( )
( n=0 n!

since ¢* = Y o2 X"/nl. As h < g implies L,(h) < L,(g) when the
transforms exist,

e

N
£ =Y ant"
n=0

A

~

o

=
S
Q

S

|

M=

o)
3|8
B B
NS—

n=0
1 N ooqn
:K<X_a_zxn+1>
n=0
( 1 1L ayn
(1)
X—o X = X
n=0

-0 (Re(s)=x > a)

as N — 0o. We have used the fact that the geometric series has the
sum

o0
1
E ' = — lz| < 1.
1—2z

n=0

Therefore,
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o0

Z o (Re(s) > ). O

=0

Note that the coefficients of the series in Example 1.17 do not
satisfy the hypothesis of the theorem.

Example 1.19.

_ Sl_l’lt _ oo (_Dnth
fo= _;(2n+1)!'

Then,

1 1
lazn| = < , n=0,1,2,...,
(Z2n+1)! (Z2n)!

and so we can apply the theorem:
<sm t) Z (—D)"L(*™)
= (@n+1)

N (="
B § (2n 4 1)s?+!

1
=tan~! (—) , Is| > 1.
s

Here we are using the fact that

X
tan_lx:f _/ 1) 2"
[ e

o0 ( 1);1X2n+1
=y ———, <],
o on41

with x = 1/s, as we can integrate the series term by term. See also
Example 1.38.

Uniform Convergence. We have already seen by Theorem 1.11
that for functions f that are piecewise continuous on [0, 00) and of
exponential order, the Laplace integral converges absolutely, that is,
fooo le~S'f ()| dt converges. Moreover, for such functions the Laplace
integral converges uniformly.
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To see this, suppose that
If ()] < Me*, t > t.

/ ” e Vf(t)dt

to

Then

5/ e F(0)ldt

fo
00
§M/ e~ (Tt gy
to

M e~ )t 0

~(x—a)

M e~ (=)o

)

to

X—o
provided x = Re(s) > a. Taking x > x; > « gives an upper bound
for the last expression:

M e~ (=)o M
<

X—a T Xg— o

g~ (oo, (1.12)

By choosing t, sufficiently large, we can make the term on the right-
hand side of (1.12) arbitrarily small; that is, given any ¢ > 0, there
exists a value T' > 0 such that

/OO e f(t) dt

to

< whenever t, > T (1.13)

for all values of s with Re(s) > xy > «. This is precisely the con-
dition required for the uniform convergence of the Laplace integral
in the region Re(s) > x, > « (see Section 1.2). The importance
of the uniform convergence of the Laplace transform cannot be
overemphasized, as it is instrumental in the proofs of many results.

F(s) - I' ass = o00. A general property of the Laplace transform
that becomes apparent from an inspection of the table at the back
of this book (pp. 210-218) is the following.

Theorem 1.20. If f is piecewise continuous on [0,00) and has
exponential order «, then

F(s) = L(f(H)) = 0
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as Re(s) — oo.

In fact, by (1.8)

/ " eyt

and letting x — oo gives the result.

- M (Re(s) = x > a)
_X—O[' 6(S)_X o),

Remark 1.21. As it turns out, F(s) — 0 as Re(s) — oo when-
ever the Laplace transform exists, that is, for all f € L (cf. Doetsch
[2], Theorem 23.2). As a consequence, any function F(s) without
this behavior, say (s — 1)/(s + 1), €’/s, or s?, cannot be the Laplace
transform of any function f.

Exercises 1.6

1. Find £(2t + 3¢* + 4sin 3t).
2. Show that L(sinhwt) = —

S p—
3. Compute

(a) L(cosh® wt) (b) L(sinh* wt).

4. Find £(3 cosh 2t — 2 sinh 2t).
5. Compute L(cos wt) and L(sin wt) from the Taylor series represen-
tations

( 1);1(0)0271 ( 1) (wt)ZVl-‘r-l
coswt = ; (2n)! , sinwt = ; 2n+ 1) )

respectively.
6. Determine L£(sin® wt) and £(cos? wt) using the formulas

s a2 1 1 2 s 2
sin” wt = 27 EcosZa)t, cos” wt =1 — sin” wt,

respectively.
) 1—e"!
7. Determine L ; )
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Hint:
n n+1

log(1 +x) = Z )

1 — coswt

t
9. Can F(s) = s/log s be the Laplace transform of some function f?

|x] < 1.

)

n+1

8. Determine L

1.7 Inverse of the Laplace Transform

In order to apply the Laplace transform to physical problems, it is
necessary to invoke the inverse transform. If L(f(f)) = F(s), then
the inverse Laplace transform is denoted by

(FE)=f0,  t=0,

which maps the Laplace transform of a function back to the original
function. For example,

E_l( 2:-0 2>:sinwt, t > 0.
st 4w

The question naturally arises: Could there be some other func-
tion f(t) # sinwt with L7 (w/(s* + w*)) = f(£)? More generally, we
need to know when the inverse transform is unique.

Example 1.22. Let

sinwt t >0
t) =
8 1 t=0.

Then
w
Lem) =g o

since altering a function at a single point (or even at a finite number
of points) does not alter the value of the Laplace (Riemann) integral.

This example illustrates that £~ (F(s)) can be more than one
function, in fact infinitely many, at least when considering functions
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with discontinuities. Fortunately, this is the only case (cf. Doetsch
(2], p. 24).
Theorem 1.23. Distinct continuous functions on [0, 00) have distinct

Laplace transforms.

This result is known as Lerch’s theorem. It means that if we restrict
our attention to functions that are continuous on [0, 00), then the
inverse transform

LTHF(s) =f(1)

is uniquely defined and we can speak about the inverse, £ (F(S)).
This is exactly what we shall do in the sequel, and hence we write

w
£_1< " Z):sina)t, t> 0.
s+ w

Since many of the functions we will be dealing with will be so-
lutions to differential equations and hence continuous, the above
assumptions are completely justified.

Note also that £7! is linear, that is,

L7 (aF(s)+DbG(s)) = af(t) + bg(t)

if E(f (t)) = F(s), E(g(t)) = G(s). This follows from the linearity of
L and holds in the domain common to F and G.

Example 1.24.

1 1 1 1
E_l + —— et + = 6—1‘
2s—1) 2(s+1)) 2 2
= cosh t, t>0.

One of the practical features of the Laplace transform is that it
can be applied to discontinuous functions f. In these instances, it
must be borne in mind that when the inverse transform is invoked,
there are other functions with the same £~ (F(s)).

Example 1.25. An important function occurring in electrical
systems is the (delayed) unit step function (Figure 1.7)

{ltza
Ua(t) =

0t < a,
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g (%)

0 a t FIGURE 1.7

for a > 0. This function delays its output until t = a and then as-
sumes a constant value of one unit. In the literature, the unit step
function is also commonly defined as

{1t>a
Uy(t) =

0t<a,

for a > 0, and is known as the Heaviside (step) function. Both defini-
tions of u,(t) have the same Laplace transform and so from that point
of view are indistinguishable. When a = 0, we will write u,(t) = u(t).
Another common notation for the unit step function u,(t) is u(t —a).

Computing the Laplace transform,

L(ua(t)) = fo b e uq(t)dt

o0
= / e Sat
a

—st |00

€

_Sa

—as

= 68 (Re(s) > 0).

It is appropriate to write (With either interpretation of ua(t))

L7} (e;as> = Uy(t),
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although we could equally have written £~ (e‘“s/ s) = V,(1) for

1t>a
V() =
a() 0t<a,

which is another variant of the unit step function.
Another interesting function along these lines is the following.

Example 1.26. For0 <a < b, let

1 0 t<a
uap(t) = 35— (ua(t) = up()) =1 ;- a<t<b
0 t>bh
as shown in Figure 1.8.
Then
e _ e—bs
L(ugp(t)) = ————.
(tan(®) s(b —a)

Exercises 1.7

1. Prove that £7! is a linear operator.
2. A function N(t) is called a null function if

t
/ N(t)dr =0,
0
forallt > 0.

(a) Give an example of a null function that is not identically
Zero.

Uab (t)

(0] a b t FIGURE 1.8



1.8. Translation Theorems 27

(b) Use integration by parts to show that
L(N®) =0,

for any null function N(t).
(c) Conclude that

L(f(O+N(H) = L),
for any f € L and null function N(t). (The converse is also
true, namely, if £(fi) = L(f,) in a right half-plane, then f;
and f, differ by at most a null function. See Doetsch [2],
pp. 20-24).
(d) How can part (c) be reconciled with Theorem 1.23?

. Consider the function f whose graph is given in Question 3 of
Exercises 1.5 (Figure E.3).

(a) Compute the Laplace transform of f directly from the explicit
values f(t) and deduce that

L(f ()

(b) Write f(t) as an infinite series of unit step functions.
(c) By taking the Laplace transform term by term of the infinite
series in (b), show that the same result as in (a) is attained.

= m (R@(S) >0,a > O)

1.8 Translation Theorems

We present two very useful results for determining Laplace trans-
forms and their inverses. The first pertains to a translation in the
s-domain and the second to a translation in the t-domain.

Theorem 1.27 (First Translation Theorem). If F(s) = E(f (t)) for
Re(s) > 0, then

F(s—a) = L(e"f(1)) (a real, Re(s) > a).

Proor. For Re(s) > a,

F(s—a)= /O h e () dt
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/oo e Sef(t)dt
0

= L(e"f(1)).
Example 1.28. Since

L(t) = 1 (Re(s) > 0),

2
then
L(te™) = Goap (Re(s) > a),
and in general,
L(t"e™) = ﬁ, n=012... (Re(s) > a).

This gives a useful inverse:

L1 BN N e t>0.
(s —a)y"t! n!

Example 1.29. Since

L(sinwt) = ——
(sin wt) T+l
then
sin3t) = ————.
L(e” sin 3t) G-2719
In general,
B s—a
E(@ tCOS C()t) = m (R@(S) > a)
at .- w
,C(@ tSll’l a)t) = m (R@(S) > (1)
at S—a
£(6 cosh a)t) = (S—a)—z—a)z (R@(S) > Gl)
L(e" sinh wt) = v (Re(s) > a).
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Example 1.30.

L1 5 — 1 s
s +4s+1 (s+2)>—3

S (T
B (s+2)2 -3 (s+2)2-3

2
— ¢ 2 cosh/3t — — ¢ ¥ sinh /3.
V3

In the first step we have used the procedure of completing the square.

Theorem 1.31 (Second Translation Theorem). If F(s) = L(f (t)),
then

L(ua(Of(t —a)) = e “F(s)  (a=0).

This follows from the basic fact that

/ ” e Mua(Of (t — a)]dt = f ” e Mf(t —a)dt,
0

a

and setting t = t — a, the right-hand integral becomes

/00 e STHIf () dr = e /OO e 'f(n)dr
0 0

= e “F(s).

Example 1.32. Let us determine E(g(t)) for (Figure 1.9)

o 0 0<t<]1
8= (t—172 t>1.

0 1 t  FIGURE 1.9
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Note that g(t) is just the function f(t) = t* delayed by (a =) 1 unit
of time. Whence

L(g®) = L O - 1))
= e L(t%)
= 2e (Re(s) > 0).

s3

The second translation theorem can also be considered in inverse
form:

L7 (e F(s)) = ua(Df (t — @), (1.14)
for F(s) = L(f(1)), a = 0.
Example 1.33. Find

—2s
[ €
c <Sz+1)~

—2s

We have

71 e L(sint),
s

so by (1.14)

—2s
£ (s§+ 1) = wy(t)sin(t —2),  (t > 0).

This is just the function sin t, which gets “turned on” at time t = 2.

Exercises 1.8

1. Determine

(a) L(e* sin 3t) (b) L(t*e™"

(© £ ((s _44)3) (d) L(e” sinh v/21)

_1 1 ) S
(e) £ <82+ZS+5> £ (SZ+68+1>
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(8) L(e™ cos(wt + ) (h) £ ((S%)Z)

2. Determine £(f(t)) for

0 0<t<?2

et >2

big
0§t<5

(a)f(f)Z{ (b)f(l‘)Z{

sinttzg

(©) f(t) = ux(t) cos(t — m).
3. Find

@ £ (%)

OFSICEEs

s 8241

_ 6—7{8
(©) L 1<32—z)'

6_“5) (E constant)

1.9 Differentiation and Integration of
the Laplace Transform

As will be shown in Chapter 3, when s is a complex variable, the
Laplace transform F(s) (for suitable functions) is an analytic func-
tion of the parameter s. When s is a real variable, we have a formula
for the derivative of F(s), which holds in the complex case as well
(Theorem 3.3).

Theorem 1.34. Let f be piecewise continuous on [0, 00) of exponential
order a and E(f (t)) = F(s). Then

n

2o F&) = L((=D)""f(1)), n=1,23,... (s>a). (1.15)

ProOF. By virtue of the hypotheses, for s > x; > «, it is justified
(ct. Theorem A.12) to interchange the derivative and integral sign
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in the following calculation.

d d oo —st
%F(S) = %/O € f(t)dt
=9 —st
= A % € f(t) dt

= / h —te”S'f () dt
0
= L(—tf(D)).

Since for any s > «, one can find some x, satisfying s > x, > «,
the preceding result holds for any s > «. Repeated differentiation
(or rather induction) gives the general case, by virtue of L(¢*f (1))
being uniformly convergent for s > x; > a. o

Example 1.35.

d
L(tcoswt) = s L(cos wt)
s

da S
ds s + w?
s — w?

T (P +od)

Similarly,

2ws

ﬁ(t sin a)t) = m

For n =1 we can express (1.15) as
f(t) = —% £ (% F(s)) (t > 0) (1.16)

for f(t) = L7 (F(s)). This formulation is also useful.

Example 1.36. Find

A s+a
fh==°L (logs+b>.
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Since

da s+a 1 1
_log = - )
ds <s—|—b> s+a s+b

__l _ 1 _ 1
f6 = tL <s+a s+b)

1
— ?(e—bt _ e—&lt)'

Not only can the Laplace transform be differentiated, but it can
be integrated as well. Again the result is another Laplace transform.

Theorem 1.37. Iff is piecewise continuous on [0, 00) and of exponen-
tial order a, with F(s) = L(f(t)) and such that lim,_,o+ f(t)/t exists,

then
/wF(X)Wzﬁ(@) (s > ).

ProoF. Integrating both sides of the equation

F(x) = /O h e Mf(dt  (x real),

/SOOF(x)dx = lim_ Sw (/Ooo e Mf(t) dt) dx.

As fooo e ™f(t)dt converges uniformly fora < s <x < w (1.12), we
can reverse the order of integration (cf. Theorem A.11), giving

/ OOF(X) dx = lim h ( f ’ e Mf () dx) dt
s w—o0 0 s

— lim Oo[e_m f(t)] dt

w—00 fo —t s

=/Ooe_“@dt— lim /Ooe_wt@dt
0 t 0 t

_e(10),
t

we obtain
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as lim,)—,oc G(w) = 0 by Theorem 1.20 for G(w) = L (f(t)/t). The
existence of L (f )/ t) is ensured by the hypotheses. O

Example 1.38.

@ E(Smt>—/oo e _ 7 tan"'s
t ) ). 2+1 2
()
= tan - (s > 0).
s
. r sinh wt _/OO wdx
(1) t )y 2 —w?

1/00( : : )
= — — dx
2 /s X—w Xx+ow

1
zzlnzi—w (s > |wl]).
Exercises 1.9
1. Determine
(@) L(t coshwt) (b) L(tsinh wt)
(c) L(t* cos i) (d) L(t?sinwt).

2. Using Theorem 1.37, show that

(@) L( )zlog(l—i—%) (s >0)
— 2
(b)ﬁ(ﬂ)z%log(l—i—i—z) (s > 0).

[Compare (a) and (b) with Exercises 1.6, Question 7 and 8,
respectively.]

— 2
(c) £ <1L8hwt) = élog (1 — C:—Z) (s > |wl|).

t
3. Using (1.16), find

. s* +a* . 1
(@ L (log (m>) (L (tan E) (s > 0).

1—¢t
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find £ (e~).

1.10 Partial Fractions

In many applications of the Laplace transform it becomes neces-
sary to find the inverse of a particular transform, F(s). Typically it
is a function that is not immediately recognizable as the Laplace
transform of some elementary function, such as

1

BCEP )

for s confined to some region (e.g., Re(s) > a). Just as in calcu-
lus (for s real), where the goal is to integrate such a function, the
procedure required here is to decompose the function into partial
fractions.

In the preceding example, we can decompose F(s) into the sum
of two fractional expressions:

1 _ A B
(s—2)(s—3) s—2 s—23

that is,
1=A(s—3)+ B(s — 2). (1.17)

Since (1.17) equates two polynomials [1 and A(s — 3) + B(s — 2)]
that are equal for all s in 2, except possibly for s = 2 and s = 3, the
two polynomials are identically equal for all values of s. This follows
from the fact that two polynomials of degree n that are equal at more
than »n points are identically equal (Corollary A.8).

Thus, ifs =2, A = —1, and if s = 3, B =1, so that

1 _ -1
(s—2)(s—3) s—2 s—3

F(s) =
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Finally,

- _ 1 a1
fiy=LT(F(@s) =L 1(— 2)+£ 1<8_3)

S_
— ¥ 4 B

Partial Fraction Decompositions. We will be concerned with the
quotient of two polynomials, namely a rational function

_ PO
Q)
where the degree of Q (s) is greater than the degree of P(s), and P(s)

and Q(s) have no common factors. Then F(s) can be expressed as a
finite sum of partial fractions.

F(s)

(i) For each linear factor of the form as 4+ b of Q(s), there

corresponds a partial fraction of the form
A

as+Db’

(ii) For each repeated linear factor of the form (as + b)", there
corresponds a partial fraction of the form

A, A, A,
as + b+(as + b)? * '+(as + by’

A constant.

Ay, Ay, ..., A, constants.

(iii) For every quadratic factor of the form as* + bs + ¢, there
corresponds a partial fraction of the form
As+ B

_ A, B constants.
as> +bs+c

(iv) For every repeated quadratic factor of the form (as*+bs+c)",
there corresponds a partial fraction of the form

A1s+ By Ays+ By n n Ans+ By
as’ +bs+c¢  (as®+ bs+ c)? (as? + bs + c)*’
Ay, ..., Ay, By, ..., B, constants.

The object is to determine the constants once the polynomial
P(s)/Q(s) has been represented by a partial fraction decomposition.
This can be achieved by several different methods.
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Example 1.39.

1 _ A B
(s—2)(s—3) s—2 s—3

or
1=A(s—3)+B(s — 2),

as we have already seen. Since this is a polynomial identity valid for
all s, we may equate the coefficients of like powers of s on each side
of the equals sign (see Corollary A.8). Thus, fors, 0 = A + B; and
for s, 1 = —3A — 2B. Solving these two equations simultaneously,
A = —1, B=1 as before.

o)
sf(s—=1))

Example 1.40. Find

Write
s+1 A n B n C
s2(s—1) s s s—1'
or
s+1=As(s—1)+B(s — 1)+ Cs?,
which is an identity for all values of s. Setting s = 0 gives B = —1;

setting s = 1 gives C = 2. Equating the coefficients of s? gives 0 =
A+ C, and so A = —2. Whence

-1 s+1 Iy & B NS o -1 1
()= () () e ()

=2 —t+42¢é.

Example 1.41. Find
= 2s?
(2+1)(s—1)2)°

2 _4s+B  C D
24+ 1)(s—1)2 241 s—1 (s—1)

We have
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or
= (As+ B)(s — 1)* + C(s* + 1)(s — 1) + D(s* + 1).
Setting s = 1 gives D = 1. Also, settings = 0 gives0 = B—C+ D, or
—1=B-C.
Equating coefficients of s*> and s, respectively,

0=A+C,
0=A—2B+C.

These last two equations imply B = 0. Then from the first equation,
C = 1; finally, the second equation shows A = —1. Therefore,

-1 2s° _ S -1 L
£ <(sZ+1)(s—1)2>_ . <32+1>+‘ (s—l)
s
L ((s—1)2>

= —cost+¢ +te'.

Simple Poles. Suppose that we have F(t) = L(f(1)) for
_ P P(s)

Q(s)  (s—on)(s =) (s—an)’
where P(s) is a polyomial of degree less than n. In the terminology of

complex variables (cf. Chapter 3), the «;s are known as simple poles
of F(s). A partial fraction decomposition is

o # o,

A A, Ay
F(s)= + + -+ .
S—a;  S—ay s —ay

(1.18)

Multiplying both sides of (1.18) by s — «; and letting s — «; yield
A = lim(s — a;)F(s). (1.19)
S—> o

(In Chapter 3 we will see that the A;s are the residues of F(s) at the
poles ozl-.) Therefore,

fy=L7(F(s)) = Zﬁ (S_al) ZA@“‘
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Putting in the expression (1.19) for A; gives a quick method for
finding the inverse:

fH) = F(s) Z hm(s — o) F(s)e™". (1.20)

Example 1.42. Find

“(c—rarae9)
(s—1D)(s+2)(s—3))"
f(Oy =lim(s = ) F(s)e' + lim (s + 2) F(s)e™ " +lim(s — 3) F(s) ¢
1 2 3

t —2t 3t
=——=€6—-——€e¢ "+ —€.
6 15 10

Exercises 1.10

1. Find £7! of the following transforms F(s) by the partial fraction
method.
1

(a) GooG-D) (b) W

@t @ i @FD
e aZ)S(sz e ® %

- 2s*+3 () s*+s+3

(s+1)%(s* +1)? s(s® — 6s% + 55+ 12)

(See Example 2.42).

2. Determine

SZ

£—l

((s2 —a)(s -
(a) by the partial fraction method
(b) by using (1.20).

b?)(s* — CZ))



Applications
and Properties

CHAPTER

The various types of problems that can be treated with the Laplace
transform include ordinary and partial differential equations as well
as integral and integro-differential equations. In this chapter we
delineate the principles of the Laplace transform method for the
purposes of solving all but PDEs (which we discuss in Chapter 5).

In order to expand our repetoire of Laplace transforms, we
discuss the gamma function, periodic functions, infinite series, con-
volutions, as well as the Dirac delta function, which is not really a
function at all in the conventional sense. This latter is considered
in an entirely new but rigorous fashion from the standpoint of the
Riemann-Stieltjes integral.

2.1 Gamma Function

Recall from equation (1.9) that

gnt1’

E(tn) —

n=1,23,....

41
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In order to extend this result for non-integer values of n, consider

L(t") = / e Stdt (v > —1).
0

Actually, for —1 < v < 0, the function f(t) = t” is not piecewise

continuous on [0, 00) since it becomes infinite as t — 0". However,

as the (improper) integral for tVdt exists for v > —1, and f(t) = t" is

bounded for all large values of't, the Laplace transform, £(t"), exists.
By a change of variables, x = st (s > 0),

o= [T () L

1 o0
_ vV _—X
= s"“,/(; x'e " dx. (2.1)

The quantity

rp) = /O Teleae (> 0)

is known as the (Euler) gamma function. Although the improper in-
tegral exists and is a continuous function of p > 0, it is not equal to
any elementary function (Figure 2.1).

Then (2.1) becomes

T(v+1)

Lt = R v>-—1, s>0. (2.2)
I'(p)
5 L
-2 -1 19) 1 2 3 p

FIGURE 2.1
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Comparing (1.9) with (2.2) whenv=n=0,1, 2, ... yields
C(n+1)=nl. (2.3)

Thus we see that the gamma function is a generalization of the no-
tion of factorial. In fact, it can be defined for all complex values of
v,v#0,—1,—2, -+, and enjoys the factorial property

F'v+1)=vI(v), v#0,—1,-2,...
(see Exercises 2.1, Question 1).

Example 2.1. Forv= —1/2,

where
o0 1
r) = / Xt d.
0
Making a change of variables, x = u?,
o 2
r3) = 2/ e du.
0

This integral is well known in the theory of probability and has the
value /7. (To see this, write

2= ( / e dx) ( f eV dy) — f / et ax dy,
0 0 0 0

and evaluate the double integral by polar coordinates, to get I =

V7/2)
Hence
L(r7) = \/g (s > 0) (2.4)
and
. 1
“1(g72) = —
L7 (s77) 7 (t > 0). (2.5)

Example 2.2. Determine

L(log t):/ e " logtdt.
0
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Again setting x = st, s > 0,

L(logt) = /000 e *log (g) %dx

1 o0 o
=- (f e “logxdx — logs/ e_xdx>
S \Jo 0

1
= ——(logs+), (26)
where

o
y = —/ e *logxdx = 0.577215. ..
0

is Euler’s constant. See also Exercises 2.1, Question 4.

Infinite Series. If
o0
fO =) ad™ (w1
n=0

converges for all + > 0 and |a,| < K(«"/n!), K, « > 0, for all n
sufficiently large, then

i a,'(n+v+1)

g (Re(s) > a).

L(f(®) =
n=0

This generalizes Theorem 1.18 (cf. Watson [14], P1.3.1). In terms of
the inverse transform, if

(o.¢]
an
F(s) = Zsm—m (v>—1), (2.7)
n=0
where the series converges for |s| > R, then the inverse can be
computed term by term:

o0

Yo—— Tt (2.8)
r(n + v+ 1)

n=

f(ty=LT(F(s) =

To verify (2.8), note that since the series in (2.7) converges for
Is| > R,

Qn

<K
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for some constant K and for all n. Then for |s| =7 > R,
lan| < K7™ (2.9)

Also,

2" o
< —1t=— 2.10
= (210)
takingo = 27. Since '(n+v+1) > I'(n) forv > —1,n > 2, (2.9) and

(2.10) imply

|ay| Ko Ko"
< = : (2.11)
I'n+v+1)  nl'(n) n!
as required.
Furthermore, (2.11) guarantees
an K(at)"
n o K@) (t>0)
F'm+v+1) n!

and as Y o (at)"/n! = ¢ converges, (2.8) converges absolutely.

This also shows that f has exponential order.
Taking v = 0 in (2.7): If

o0

an
F(S) = Z sntl

n=0

converges for |s| > R, then the inverse is given by

o0

fO =L (FE) =) % (.
n=0 :
Example 2.3. Suppose
o L _ L a -3 :
(S)_\/s-l——a_ﬁ< +§) (a real).

Using the binomial series expansion for (1 + x)%,

R [ TOR MO 0]
”+(_1)n.1.3.5...(2n_]) (a)n+'..i|

2"n! S

+ -
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2 (-1)*1-3.5.--.(2n—1)a"
=2

- sl > lal

2'nls
Inverting in accordance with (2.8),

Z ( 1)”1 .3.5... (Zn _ 1)antn—%
2'IT (n+ 1)

f(t)y=LT(F(s) =

1 o~ (=D"-8:5--(2n— Dat"
_J_Z Z”n!F(n—i—%) '

Here we can use the formula vI'(v) = I'(v + 1) to find by induction

that
- D (L) (L85 @n-1)
(+3)=r (G (55)

=~/5<1'3'5“2,;(2n_1)>-

Thus

=L i (—1)'a"t"

|
— JT n!

1
=—c¢
/Tt
Note that in this case f(t) can also be determined from the first
translation theorem (1.27) and (2.5).

—at

Exercises 2.1

1. Establish the “factorial property” of the gamma function
Frv+1)=vI(v),

forv > 0.
2. Compute

@Tr(3) (b) I'(3)
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(© I (-3) (d) I (=3).
3. Compute
et e
@<(7) e (%)

1 o0 n
© £ (=) (@ £ (Z — ) o>

(e) L7 (Z (1 )H]) Is| > 1

® LD,

4. (a) Show that

d
— " =¢"ogt.
v 8
(b) From (a) and 2.2 prove that
I"(v) —T'(v)logs
SU

L(t" Mogt) = : s>0, v>0.

(c) Conclude that
1
L(logt) = ——(logs +),
where
o
y = —f e *logxdx = 0.577215. . .,
0

is the Euler constant as in (2.6).

2.2 Periodic Functions

If a function f is periodic with period T > 0, then f(t) = f(t + T),
—00 < t < 00. The periodic functions sin t and cos t both have period
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f(t)

0] T 2T 3T t  FIGURE 2.2

T = 2w, whereas tant has period T = &. Since the functions f with
which we are dealing are defined only for t > 0, we adopt the same
condition for periodicity as above for these functions as well.

The function f in Figure 2.2, is periodic with period T. We define

T
Fi(s) = /0 e f () dt, (2.12)

which is the Laplace transform of the function denoting the first
period and zero elsewhere.

The Laplace transform of the entire function f is just a particular
multiple of this first one.

Theorem 2.4. If F(s) = L’(f (t)) and f is periodic of period T, then

1

PROOF.

F(s)= /0 e Sf(dt = /0 e Vf(H)dt + /T e Yf(t)dt.

Changing variables with T =t — T in the last integral,

f h e S f(t)dt = / b e TDf(r + T)dr
T 0

=¢ 7 /OO e f(r)dr
0
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f(®)

11 R N -

0] a 2a 3a 4a 5a t

by the periodicity of f. Therefore,

T
F(s) = /0 e S'f(t)dt + e *TF(s);

solving,

1
F(S) = WFI(S)

FIGURE 2.3

|

Example 2.5. Find the Laplace transform of the square-wave
function depicted in Figure 2.3. This bounded, piecewise continuous
function is periodic of period T = 2a, and so its Laplace transform

is given by
1
F(s) = 1_—€_MF1(S)
where
2a
Fi(s) = / e Sdt
a
— _(efas efzas).
Thus,

—as 1

Tsdte®)  s(l+ew)

F(s)

(2.14)
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Observe that (2.13) can be written as

F(s) = ie—”TSF1 (s)  (x=TRe(s) > 0). (2.15)
n=0

In the case of the square-wave (Figure 2.3), the function can be
expressed in the form
() = ua(t) — uga(t) + uza(t) — Uaa() + - -. (2.16)

Since Fi(s) = (1/s)(e™* — ¢~%*), we have from (2.15)

F(s) = L(f(1)) =fe‘2”“* “_gy (T =2a)
n=0

1.
i Z(e—(Zn—H)as _ e—(2n+2)as)
S
n=0

1 _ “ous | - —aas
2—(6 as_62ab+6 3as_64ab+___)

= L(ua(0)) = L(u2a(6)) + L£(usa(6)) — L(saa(D) + -+,

that is, we can take the Laplace transform of f term by term.

For other periodic functions with a representation as in (2.16),
taking the Laplace transform in this fashion is often useful and
justified.

Example 2.6. The half-wave-rectified sine function is given by

sinot 2T <t < —(2”:1)”
f) = n=0,1,2...
@n+1) (2n+2)m
0 = <t<=/—,

(Figure 2.4). This bounded, piecewise continuous function is
periodic with period T = 27/w. Thus,

1
L(f(1) = = 1(9),

— e P

where

Fi(s) = / "¢ sinwt dt
0
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f(®)
14
T 27 37
0 5 P “w ! FIGURE 2.4
oSt z
= ——(—ssinwt — w cos wt)
§2 + w? 0
— w -
BT
Consequently,
L(f(1) =

(s + o)1 —e o)

The full-wave-rectified sine function (Figure 2.5)

F(t) = I sin o],
f(t)
114
! A )
0 " m > ' FIGURE 2.5
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with T = n/w, has

1
L(f) = 71:1(8)

Exercises 2.2

1. For Figures E.4-E.7, find the Laplace transform of the periodic
function f(¢).

f®)

14— N

(0] a 2a 3a 4a ¢ FIGURE E.4

FIGURE E.5
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f(t)

14 ‘

0 a fa ¢ FIGURE E.6
f(t)

]_,

19 a 2 3a  4a t FIGURE E.7

2. Compute the Laplace transform of the function
F(8) = u(t) = ta(t) + uza(t) — Uza(t) + -

term by term and compare with Question 1(a).
3. Express the function in Question 1(b) as an infinite series of unit

step functions and compute its Laplace transform term by term.
4. Determine f(t) = L7 (F(s)) for

1 _ e*ﬁS
F(s)= ————  (Re(s) >0, a > 0)
S(eas + e as)

by writing F(s) as an infinite series of exponential functions and

computing the inverse term by term. Draw a graph of f(t) and

verify that indeed L(f (1)) = F(s).

2.3 Derivatives

In order to solve differential equations, it is necessary to know the
Laplace transform of the derivative f” of a function f. The virtue of
L(f") is that it can be written in terms of L£(f).
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Theorem 2.7 (Derivative Theorem).
Suppose that f is continuous on (0, 00) and of exponential order o
and that f’ is piecewise continuous on [0, 00). Then

L(f'(0) =sL(f()) —fO07)  (Re(s) > ). (2.17)

Proor. Integrating by parts,

o.¢] T
/ e Sf'(t)dt = lim / e () dt
0 228 )s

= hm |:e Sff(t)’ +s / e Vf(0) dt]

T—)OO

= lim |:e_”f(r) — e f(8) + s / re_Stf(t) dti|
§—0 $

T—>Q

=—f(0") +s / Ooe—sff(t) da  (Re(s) > a).
0
Therefore,

L(f'(0) = sL(f(1) — f(01).
We have made use of the fact that for Re(s) = x > «,
e f(7)] < e “"Me*
=Me " -0 as T— o0
Also, note that f(07) exists since f'(0") = lim,_ ¢+ f/(¢) exists (see

Exercises 2.3, Question 1). Clearly, if f is continuous at t = 0, then
£(0™) = £(0) and our formula becomes

L(f'(0) = sL(f(1)) — F(0). (2.18)

|

Remark 2.8. An interesting feature of the derivative theorem is

that we obtain E(f '(t)) without requiring that f” itself be of expo-

nential order. Example 1.14 was an example of this with f(¥) =
2

sin(e").

Example 2.9. Letuscompute £(sin? wt) and £(cos? wt) from (2.18).
For f(t) = sin® wt, we have f/(t) = 2w sin ot cos wt = w sin 2wt. From
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(2.18),
L(wsin 2ot) = s L(sin® wt) — sin® 0,
that is,
.2 1 .
L(sin” ot) = — L(w sin 2wt)
s
o 2w
s 82+ 4w?
_ 2w*
(82 + 4w?)’
Similarly,

1 1
L(cos* wt) = — L(—wsin 2wt) + —
S S

w 2w 1
—_— + —
s §2+4w? s
_ s% + 2w?
(82 + 4w?)’

Note that if f(0) = 0, (2.18) can be expressed as

L7 (sF(s)) = (1),

where F(s) = E(f(t)). Thus, for example

. h t /
L < > S 2) = (sm a4 ) = cosh at.
st —a a

It may be the case that f has a jump discontinuity other than at the
origin. This can be treated in the following way.

Theorem 2.10. Suppose that f is continuous on [0, 00) except for a
Jump discontinuity at t = t; > 0, and [ has exponential order o with f’
piecewise continuous on [0, 00). Then

L(F'(D) = sLIFO) — (0 — e (FED) = f(5))  (Re(s) > a).
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PRrROOF.

/ h e Vf () dt

0

= lim | e %f'(t)dt

T—>0Q 0

T—0Q

= lim [eStf(t)‘;l + e ¥f (1) L+ +s /O re*sff(t) dt]

= lim [e—sﬁ F(t) = FO) + e f () — e ™"f(t) + s / ' e (1) dt} .
T—>00 0
Hence
L(f'(1) =sL(f() = F(0) — e (F(51) = f(t))-

If0O =t < t; < --- < t, are a finite number of jump
discontinuities, the formula becomes

L(F®) =sL(F®) = fON) =Y e (FEH = f(5). (219
k=1
O

Remark 2.11. If we assume that [’ is continuous [0, 00) and also of
exponential order, then it follows that the same is true of f itself .

To see this, suppose that
If'(Ol <Me™,  t>ty, a#0.
Then

£ = f F(0) e+ f(t)

by the fundamental theorem of calculus, and

F(O < M f e dr 1 |f (1)

A

M
— e + |f(to)l
o

< Ce™, t > to.

Since f is continuous, the result holds for & # 0, and the case ¢« = 0
is subsumed under this one.
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To treat differential equations we will also need to know L(f")
and so forth. Suppose that for the moment we can apply formula
(2.18) to f”. Then

L(f"(0) = sL(f'(H) = f(0)
=s(sL(f(1) = F(®) — f'(0)
= s*L(f (1)) — sf(0) — f(0). (2.20)

Similarly,

E(f///(t)) — Sﬁ(f//(t)) _f//(o)
= SL(F(1) — $*F(0) = sf'(0) = f'(0)  (2.21)
under suitable conditions.

In the general case we have the following result.

Theorem 2.12. Suppose that f(t), f'(t), -, f"~ V() are continuous
on (0, 00) and of exponential order, while fU)(t) is piecewise continuous
on [0, 00). Then

LFOD) = L) =" F(07) =" f/(0F) = = D0,
(2.22)

Example 2.13. Determine the Laplace transform of the Laguerre
polynomials, defined by

t n

L) = ——= t"e™, n=01,2....

Let y(t) = t"e~". Then

1
L(La() =L (ef — y(”)) .

First, we find by Theorem 2.12, and subsequently the first translation
theorem (1.27) coupled with (1.9),

s'n!

L") =5"Ly) = W

It follows that
1 ., (s—1)
L(L.(H)) =L <6t Ey( )) = (Re(s) > 1),

again by the first translation theorem.
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Exercises 2.3

1. In Theorem 2.7, prove that f(01) exists?
(Hint: Consider for ¢ sufficiently small,

[ roa=re s,

andlet§ - 07))
2. Using the derivative theorem (2.7), show by mathematical
induction that

L") = e

(Re(s) > 0),n=1,2,3,....
3. (a) Show that

L(sinh wt) = ZL
s

— w?

by letting f(t) = sinh wt and applying formula (2.20).
(b) Show that

2 2
L(tcoshot) = &
(82 _ a)Z)Z
(c) Show that
. 2ws
£(t sinh a)t) = m
4. Verify Theorem 2.10 for the function
to<t<l
t) = T
f® {2 t>1.
5. Compute
(a) L(sin® wt) (b) L(cos® wt).
6. Write out the details of the proof of Theorem 2.12.

7. Give an example to show that in Remark 2.11 the condition of
continuity cannot be replaced by piecewise continuity.
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2.4 Ordinary Differential Equations

The derivative theorem in the form of Theorem 2.12 opens up the
possibility of utilizing the Laplace transform as a tool for solving or-
dinary differential equations. Numerous applications of the Laplace
transform to ODEs will be found in ensuing sections.

Example 2.14. Consider the initial-value problem

d’y :
e ty=1  y0)=y(0)=0.

Let us assume for the moment that the solution y = y(t) satisfies

suitable conditions so that we may invoke (2.22). Taking the Laplace

transform of both sides of the differential equation gives

L")+ Ly) = L(D).
An application of (2.22) yields

1
SLY) = sy(0) —¥' (O + L) = =,

that is,
LY)=—F—.
) s(s? + 1)
Writing
1 _A Bs+C
s(s24+1) s s241
as a partial fraction decomposition, we find
1 N
LyY)=-— .
@) s  s241

Applying the inverse transform gives the solution

y=1—cost.
One may readily check that this is indeed the solution to the initial-

value problem.

Note that the initial conditions of the problem are absorbed into
the method, unlike other approaches to problems of this type (i.e.,
the methods of variation of parameters or undetermined coefficients).



2. Applications and Properties
P

General Procedure. The Laplace transform method for solving or-
dinary differential equations can be summarized by the following
steps.

(i) Take the Laplace transform of both sides of the equation. This
results in what is called the transformed equation.
(ii) Obtain an equation L(y) = F(s), where F(s) is an algebraic
expression in the variable s.
(iii) Apply the inverse transform to yield the solution y =
L7Y(F(8)).

The various techniques for determining the inverse trans-
form include partial fraction decomposition, translation, derivative
and integral theorems, convolutions, and integration in the com-
plex plane. All of these techniques except the latter are used in
conjunction with standard tables of Laplace transforms.

Example 2.15. Solve

17

Y'+y' = +t+1, y0)=y0)=y"(0)=0.
Taking £ of both sides gives
L")+ L") = L)+ L)+ L),
or
[s*£(y) = s*y(0) = sy'(0) —y"(0)]
Hs* Ly) = sy(0) — ¥ (0)] = S_% + 81—2 + %

Putting in the initial conditions gives

28% —1
3 2
L L) = ——
SLY) +s°L(Y) S5 —1)
which is
28 —1

Ly = s+ )is—1)

Applying a partial fraction decomposition to

Lo = 28 — 1 _4,B C D E F
(y)_s4(s+1)(s—l)_s & 8 st s+1 s-—1

)
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we find that

1 1 1

1
=375 67D T 25=1)

and consequently

o (MY (Al (e
y=-£ (sz>+£ (54 ZE s+1 +2£ s—1

1 3 1 —t 1 t

=—t+5t —Ee +§e.

In general, the Laplace transform method demonstrated above is
particularly applicable to initial-value problems of nth-order linear
ordinary differential equations with constant coefficients, that is,

dny dn—ly

4y B Iy = f(t
andtn + ay ldtn_l + + aoy f( ) (2.23)

YO =yo, YO =y, ..., y"(0) = yn-1.

In engineering parlance, f(t) is known as the input, excitation, or
forcing function, and y = y(t) is the output or response. In the event
the input f(t) has exponential order and be continuous, the output
Yy =y(t) to (2.23) can also be shown to have exponential order and
be continuous (Theorem A.6). This fact helps to justify the applica-
tion of the Laplace transform method (see the remark subsequent to
Theorem A.6). More generally, when f € L, the method can still be
applied by assuming that the hypotheses of Theorem 2.12 are sat-
isfied. While the solution y = y(t) to (2.23) is given by the Laplace
transform method for ¢ > 0, it is in general valid on the whole real
line, —oo < t < oo, if f(t) has this domain.

Another important virtue of the Laplace transform method is
that the input function f(t) can be discontinuous.

Example 2.16. Solve
Y'+y=Eu(t),  y0)=0, y(0)=1.

Here the system is receiving an input of zero for 0 <t < a and E
(constant) for t > a. Then

—as

S*L(Y) — sy(0) —y'(0) + L(y) =
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and

1 Eeg™%

L =
@) s 41 * s(s>+1)
1 1
= +E|l-— S e,
s2+1 s s241

Whence

_ -1 1 -1 l_ S —as
y=~ (s2+1)+E£ [(s s2+1>e ]

= sint + Eua(6)(1 — cos(t — a)),

by the second translation theorem (1.27). We can also express y in
the form

sint 0<t<a
| sint+E(1 —cos(t —a)) t>a.
Note that y(a™) = y(a™) = sina, y'(a™) = y/(at) = cosa, y'(a™) =
—sina, but y’(at) = —sina + Ea®. Hence y’(t) is only piecewise
continuous.

Example 2.17. Solve

Y sint0<t<wm ,
U y(0)=y(0)=0.
We have
S“L(Y) + L(y) = / e sintdt
0
_e—st s
= (s-sint + cost)
s 41 0
B e*i‘[S + 1
241 2410
Therefore,
e—JTS

=Tt @i
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and by Example 2.42 (i) and the second translation theorem (1.31),

y= %(sint — 1 Cost) + Ug(t) [%(sin(t — 1) — (t —m)cos(t — n))].

In other words,
S(sint —tcost) 0 <t < m
Yy= 1
—5 T Cost t>m.
Observe that denoting the input function by f(1),
F(£) = sint(1 — ux(t))
= sint + u,(t) sin(t — m),

from which

6—7TS

L) =——4+——
F®) SZ+1+82+1'
again by the second translation theorem.

General Solutions. If the initial-value data of (2.23) are unspeci-
fied, the Laplace transform can still be applied in order to determine
the general solution.

Example 2.18. Consider

y// +y — 6_t,

and let y(0) = yo, ¥'(0) = y, be unspecified. Then
$*L(y) = sy(0) = y'(0) + L(y) = L(™),
that is,

SYo U
+ +
(s+D)(s?+1) &+1 s*+1

L(y) =

1 1g_1
2 2 2 YoS U

= — + + ,
s+1 s2+1 s24+1  s2+41

by taking a partial fraction decomposition. Applying £},

Lot ! t+ (0 + 2 ) sine
= —¢€ — — ] COS — | Ssint.
Y ) Yo 5 Y1 2


Administrator
ferret
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Since yo,y1 can take on all possible values, the general solution to
the problem is given by

Y =cocost+ ¢y sint+%e‘t,

where ¢y, ¢; are arbitrary real constants. Note that this solution is
valid for —oo < t < 0.

Boundary-Value Problems. This type of problem is also amenable
to solution by the Laplace transform method. As a typical example
consider

Vi 2., — il —
Y + Ay = cos it y(0) =1, y(i)_l.

Then
Ly") + A L(y) = L(cos it),
so that
2 2 S
(8" +A)LY) = Ry +sy(0) +¥/(0),
implying
sy(0) | Y'(0)
Ly = .
(y) (SZ + )\2)2 SZ + )»2 SZ + )\2
Therefore,
. y(0) .
y= Ty tsin At + cos At + — sin At, (2.24)

where we have invoked Example 2.42 (ii) to determine the first term
and replaced y(0) with its value of 1. Finally, from (2.24)

lzy(n>— T y(O)

o) T a2
gives
y'(0) ﬂ
=1-—
A 472
and thus

1 T
= —tSin At + cos At <1 — —) sin At.
Y 2\ + + 472
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Similarly, if the boundary data had been, say

o =1 y(3)=1

then differentiating in (2.24)

1
y = ﬁ(sin At 4 At cos At) — Asin At + y'(0) cos At.

Thus,
and

YO ==(1+),
to yield

1 1 T
= — tsinAt 4+ cosit — — (1 + —) sin At.
Y 2\ A 2A

Systems of Differential Equations. Systems of differential equa-
tions can also be readily handled by the Laplace transform method.
We illustrate with a few examples.

Example 2.19.

dy daz 0 . . .
T TE = =1, z(0)=0.
dt ! dt yr y( ) ) ( )
Then
L) =—-L(2) ie, sLy)—1=—L(2)
and (2.25)

L(Z)=L(y) e, sL(z)= LY.
Solving the simultaneous equation (2.25)
SLY) = s = —sL(2) = —L(y),

or

Ly) =

’

s2+1
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so that
Y = cost, z = —y =sint.
Example 2.20.
y+7+y+z=1,
y+z=¢, y0)=-1, z0) =2
From the first equation, we have
1
SLEY) +1+5L(2) =2+ L) + £(2) = (2.26)
From the second equation, we have
1
SLY)+1+LE) = —7 (2.27)
Solving (2.26) and (2.27), we arrive at
—s*+s+1
LY)=—"""
) SG—1)

1 2 1

+ .
s s—1 (s—1)

Taking the inverse transform yields
y=1-2e+t¢, z=2e —te.

Integrals. In certain differential equations it is also necessary to
compute the Laplace transform of an integral.

Theorem 2.21. If f is piecewise continuous on [0, 00) of exponential
order a(> 0), and

= d
5() /0 Fu) du,
then
1
Le®) =< L") (Re() > a).

ProoF. Since g'(t) = f(t) except at points of discontinuity of f,

integration by parts gives
He ST 1 [T
o SJo

oty dt = i
/0 e " g(t) rggo[ s
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Since g(0) = 0, we need only compute

—sT
lim 800¢ "
T—>00 —5s

To this end,
@Ukﬂﬂfef”/1VWN¢4
0

T
< Me—xr/ U du
0

— M(e—(x—a)r _ e—xr)
o

— 0 as tv—>oo for x="TRe(s)>a >0.

Similarly, this holds for « = 0. Hence

1
L(e) =< L) (Re(s) > a). =
Example 2.22.
L(si(n) = £ (/Ot Si;”" du) - % c (—Sh:t)
1 1
= — tan = —,
S S

by Example 1.34 (i). The function, Si(t), is called the sine integral.

The result of Theorem 2.22 can also be expressed in the form

S (FOY_ [
c (S)—Aﬂwm

where F(s) = E(f(t)). Hence, for example,

1 1 [ 1
£ —) = —/ sinh au du = —(coshat — 1).
s(s? — a?) a Jo a’

Differential equations that involve integrals (known as integro-
differential equations) commonly arise in problems involving elec-
trical circuits.
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%\/\/\/7

R
L: inductance (constant)
R: resistance (constant) () E(t) (O —
C: capacitance (constant) ——
I: current

L

FIGURE 2.6

Electrical Circuits. In the (RCL) circuit in Figure 2.6, the volt-
age drops across the inductor, resistor, and capacitor are given by
L(dI/dt), RI, and (1/C) fot I(7) dr, respectively, where Kirchoff's volt-
age law states that the sum of the voltage drops across the individual
components equals the impressed voltage, E(t), that is,

LdI+RI+1/tI dr = E(t 2.28
—_— —_— ‘E ‘E— . .

Setting Q (t) = fot I(7) dr (the charge of the condenser), we can write
(2.28) as

a‘Q aQ Q
L— +R— 4+ — = E(t 2.29
ar? + At + C ® (2.29)
since I = dQ/dt. This will be the basis of some of the electrical

circuit problems throughout the sequel.

Example 2.23. Suppose that the current I in an electrical circuit
satisfies

LA + RI = E, sin ot
— = Eysin wt,
dat 0

where L, R, Ey, and w are constants. Find I = I(¢) fort > 0if1(0) = 0.
Taking the Laplace transform,
an)
Ls L(I)+RL(I) = ——,
(D+RLD = 57—
that is,
EQC()

T (Ls+R)(E+w?)

LD
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Considering partial fractions

Eow/L A Bs+C
L) = = + ,
(s+R/L)(s*+w?) s+R/L s>+ w?
we find that
_ FEoLw B— —FEoLw _ FEoRw
L?w? + R?' L2w? +R? L2w? + R?
and so
I(t) = _Bolo e it 4 _ EoR sin wt — _ Eolo COS wt.
L?w? 4+ R? L2w? 4 R? L*w® + R?

Example 2.24. Suppose that the current I in the electrical circuit
depicted in Figure 2.7 satisfies

LdI-I-l/tI d E
— 4+ — ) dt =
¢, (7) )

where L, C, and E are positive constants, I(0) = 0. Then

L(I) E
L 1 —_— = —
sLD+ 7=
implying
EC E
L) = = .
D LCs?+1 L(s*+1/LC)
Thus,
I(t) E\/E in—— ¢
= — sin
L ~LC
OF® p—

VAAAS FIGURE 2.7
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Differential Equations with Polynomial Coefficients. Recall
(Theorem 1.34) that for F(s) = £(y(t)),

n

d
S FO=CDL(y®0) (s>

for y(t) piecewise continuous on [0, o0) and of exponential order .
Hence, forn =1,

L(ty(t)) = —F'(s).

Suppose further that y/(t) satisfies the hypotheses of the theorem.
Then

d
L(w/(0) = —— L)

Ry 0
= T (sF(s) = y(0))
= —sF'(s) — F(s).

Similarly, for y” (1),
d
E t i — —_E Z t
(ty) = == L")

a
= —— ("F(9) = sy(0) — ¥ (0)
= —s*F/(s) — 25F(s) + y(0).

In many cases these formulas for £(ty(t)), L(ty'(1)), and L(ty" (1))
can be used to solve linear differential equations whose coefficients
are (first-degree) polynomials.

Example 2.25. Solve
Yty —2y=4 yO0)=-1, y(0)=0.
Taking the Laplace transform of both sides yields
2 / 4
SF(s) + s — (sF'(s) + F(s)) — 2F(s) = —,
s

or

) 3 4
F(s)+(——s)F(s):—S—2+1.

S
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The integrating factor is
1u(s) = ef(%—s)ds _ 836_82/2.
Therefore,

~22\ 4 2 2
(F(S)336 s/Z) _ __2836 /2 4 Bg=512
s

and
F(s)s’e™/? = —4 / se52ds + / $3e™524s.
Substituting u = —s?/2 into both integrals gives

F(s)sse_s‘z/2 = 4/e“du + Z/Me“du

— 46782/2 +2 (_TSZESZ/Z o 652/2> +C

— Ze—sz/z _ Sze—sz/z +C
Thus,

2 1 C o
F(§)=—=— -+ —¢"2
) $ s 0§
Since F(s) — 0 as s = oo, we must have C = 0 and

yiy =t -1,
which can be verified to be the solution.

There are pitfalls, however, of which the reader should be aware.
A seemingly innocuous problem such as

y—2ty=0,  y0)=1,

has y(t) = ¢’ as its solution, and this function, as we know, does
not possess a Laplace transform. (See what happens when you try
to apply the Laplace transform method to this problem.)

Another caveat is that if the differential equation has a regular
singular point, one of the solutions may behave like logt ast — 07;
hence its derivative has no Laplace transform (see Exercises 1.2,
Question 3). In this case, the Laplace transform method can deliver
only the solution that is bounded at the origin.
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Example 2.26. Solve
ty' +y +2y=0.

The point t = 0 is a regular singular point of the equation. Let us
determine the solution that satisfies y(0) = 1. Taking the Laplace
transform,

(—8°F'(s) — 2sF(s) + 1) + (sF(s) — 1) + 2F(s) = 0,
that is,
—8?F'(s) — sF(s) + 2F(s) = 0,

or
1 2
F(s)+<——S—)F(s)—0 s > 0.

Then the integrating factor is

n(s) = ef(%_s%)ds = se?’".

Therefore,
(F(s)se”*) =0
and
Ce—Z/S

F(s) =

Taking the series ¢ = Y - (¥"/n!) with x = —2/s implies
( 1) 27’1
F(S) Z nign+1 .
=0

In view of (2.8) we can take £7! term by term so that

(—1)"2"t"
Yyt =C ; O
The condition y(0) =1 gives C = 1.

Note that y(t) = Jo(24/at) with a = 2, from the table of Laplace
transforms (pp. 210-218), where Jj is the well-known Bessel function
(2.55). There is another solution to this differential equation which is
unbounded at the origin and cannot be determined by the preceding
method.
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Exercises 2.4

1. Solve the following initial-value problems by the Laplace trans-
form method.

dy
(@) - —y=cost,  y(0)=-1
dy
(b) - +y=re,  y0)=2
d*y . /
(@ Z; +4y=sint,  yO)=1, ¥(0)=0
dzy dy /
@ 5 -2 —3y=t, y0)=2y0)=1

d*y d*y dy . /
(@) —5+5 7 +25 —8y=sint, y(©0) = 0, ¥(0) = 0,

y'(0) = -1

dy | dy ,
(B —3+ 5 =fO,y(0)=1,y/(0) = —1, where

10<t<1
f(t)_{0t>1
P _JcostO=t=m
(g)y+y_{ 0 t>m y0)=0y0)=0
(h) ¥y —y=0,y(0)=1,4'(0) =y"(0) =y"(0) =0.

2. Solve the boundary value problems.

@) v/ +2y=sinkt,  yO) =1 y(F)=m

2, — —

My +1y=t YO =1, y(F)=-1.
3. Suppose that the current I in an electrical circuit satisfies
LdI +RI=E

dr — L0,

where L, R, E, are positive constants.

(a) Find I(t) for t > 0if 1(0) = Iy > 0.

(b) Sketch a graph of the solution in (a) for the case Iy > E¢/R.

(c) Show that I(t) tends to Eg/R as t — 0.
4. Suppose that the current I in an electrical circuit satisfies

ar

LE + RI = Ey + A cos wt,
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where L, R, Ej, A and w are constants. Find I(t) for t > 0 if
1(0) = 0.
5. Find the current I(t), t > 0, if

LdI-{-RI—i-l/tI a int

— — 7)dr = sin

7 c ), () )
andL=1R=3,C=31(0)=1.

6. Solve the following systems of equations by the Laplace transform
method.

de—l—S +y=0 dx+ =1 +sint
(a) dt X y_ (b) dt X y_ sin
Zdy—l— +3 0 y dx+ t —sint
—_— X g _—— — = — 81
dr Y a ar Y
x0)=2, y0)=0 x(0)=0, y0)=1

© xO-y'O+yH)=¢"—1
YO +Y ) —yt) = -3¢+t

x(0) =0, y(0)=1, y(0)=—2.

7. Solve the following differential equations by the Laplace trans-
form method.

(@t —-y=1

Mty -y=-1, y0)=0

© ty'+y=0, y0)=0

(@ ' +(t+1y +2y=e", y0)=0.

2.5 Dirac Operator

In order to model certain physical events mathematically, such as a
sudden power surge caused by a bolt of lightning, or the dynamical
effects of a hammer blow to a spring-mounted weight, it turns out
that ordinary functions are ill suited for these purposes. What is
required is an entirely new entity that is not really a function at all.
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Because of the status of this new entity, we also require a new tool
in order to discuss it, namely the Riemann-Stieltjes integral, which
is just a natural extension of the conventional Riemann integral.

Riemann-Stieltjes Integral. Consider a partition of the interval
[, B] given by ¢ =ty < t; < -+ < t,1 < t, = B, choosing from
each subinterval [t,_;, ;] an arbitrary point x; with t,_; < ¥ < t.
Given functions f and ¢ defined on [, ], we form the sum

> Felet) — eti-)]. (2.30)
i=1

If these sums converge to a finite limit L as A = max;(t; —ti—;) = 0
as i — oo, and for every choice of x; € [ti_;, ;], then this limit is
called the Riemann-Stieltjes integral of f with respect to ¢ on [a, B],
and for the value of L we write

B
/ £(6) de(0).

If p(t) = t, then all the sums in (2.30) are the usual Riemann
sums and we obtain the ordinary Riemann integral.

The basic properties of the Riemann-Stieltjes integral are listed
in the Appendix (Theorem A.9) and are very similar to those of the
Riemann integral, as one might expect. It is important to note that
the function ¢ need not be continuous. In fact, if f is continuous on
[a, B] and ¢ is a nondecreasing function on [a, B], then faﬁ f(t) de(t) exists
(see Protter and Morrey [10], Theorem 12.16).

For example, let ¢(t) = u,(t), the unit step function (Example
1.25):

l1t>a
p(t) =
®) 0t < a,
for a > 0. If f is continuous on some interval [«, 8] containing a, say
a < a < B, then for any particular partition, only fort,_; < a < ¢
is there any contribution to the integral (all the other terms being
zero), and

> flet) — e(ti-)] = F@)e(t) — e(t-1)]
i=1
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o(t)
11 ;
19) o tioi  a w ti B t FIGURE 2.8
= f(x)(1 —0)
=f(x)

(Figure 2.8). Taking the limit as A — 0 (whereby x; — a) gives the
value of the Riemann-Stieltjes integral

B
/ £(0) dua(t) = f(@) (2.31)

since f(x)) — f(a).
The property (2.31) is called the “sifting property” in that it sifts
out one particular value of the function f. Let us denote

8o = duy,  a>0, (2.32)

and for a = 0, set § = §;. From the sifting property we see that the
action of §, on continuous functions is that of an operator, that is,

o0
Salf] = / f()8a(t) = f(a), (2.33)
—00
and we see that this operator is linear:

Salcifi + c2f2] = c18a[fi] + C284[f2],

for constants ¢y, ¢;.

We shall call §, the Dirac operator, although it is also known as
the Dirac distribution, Dirac measure concentrated at a, Dirac delta
function, or impulse function. P.A.M. Dirac, one of the founders of
guantum mechanics, made extensive use of it in his work. However,
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the “delta function” was highly controversial until it was made rig-
orous by the French mathematician Laurent Schwartz, in his book
Théorie des distributions (cf. [13]). The class of linear operators of
which the Dirac operator is just one example is known as distribu-
tions or generalized functions (see Guest [5], Chapter 12; also Richards
and Youn [11]).

Let us use the Riemann integral to show that the sifting prop-
erty (2.33) for continuous functions could not possibly hold for any
“proper function” ¢,.

Let f, be continuous, f,,(t) = 0 for [t| > 1/n, f,(t) = 1 — n|t| for
[t| < 1/n, so that with a = 0, f,,(0) = 1. If ¢, is Riemann integrable,
then it must be bounded by some constant M on, say, [—1, 1]. If ¢,
satisfies the sifting property, it follows that

1= / £ o) dt < f f(Olgnolde

0 2M
<M | dt=="=,
_1 n

a contradiction for n sufficiently large (Figure 2.9).

However, there is an important relationship between the Rie-
mann-Stieltjes and Riemann integrals under suitable conditions.
Notably, if f, ¢, ¢" are continuous on [«, B], then

B B
f £(6) de(t) = / ()¢ dr (2.34)

(see Theorem A.10).

fn

1
0 » ' FIGURE 2.9

3=
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One further property of the Dirac operator worth noting is

/Oo Su(t) =1, (2.35)

o0

which can be expressed as the total point mass concentrated at a is
unity.

Laplace Transform. Interms ofthe Riemann-Stieltjes integral, the
Laplace transform with respect to a function ¢ defined on [0, 00) is given
by [cf. Widder [15] for an explication using this approach]

o0

b
F(s) = Lr_s(dp) = / e Mdo(t) = bllr?o / be—squz(t) (2.36)

—0
whenever this integral exists. Since we have taken the integral over
(—o0, 00), we will always set ¢(t) = 0 for t < 0. In particular, for
d(p = du(l = 86{1

Lr_s(8,) = / e %8,(1)

—o0

—as

=e 7, a >0, (2.37)

by the sifting property. When a = 0, we have
Lr_s(8) =1.

Here we have an instance of the basic property of the Laplace
transform, F(s) — 0 as s — oo, being violated. But of course, § is not
a function but a linear operator.

The application of the Riemann-Stieltjes Laplace transform (or
Laplace-Stieltjes transform as it is known) becomes more transparent
with the following result. We will take a slight liberty here with the
notation and write Lr_s(") for Lr_s(dy) whenever ¥’ is continuous
on [0, 00).

Theorem 2.27. Suppose that ¢ is a continuous function of exponential
order on [0, 00). Then

Lr—s(p) = L(9).

Proor. Let

lﬂ(f)=/0 p(r)dr,
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and set ¢(t) = Y(t) = 0 for t < 0. Then ¥/(t) = ¢(t), except possibly
att =0, and in view of (2.34),

L@T:/wG*W@dh:/wéﬁwﬁﬂﬁ=/m?”ﬁ¢®
= Lr_s(dV) = Lr—s(V) = Lr_s(¢),
as desired. .

Remark 2.28. In the preceding theorem, the continuous function
¢ need not be of exponential order as long as the usual Laplace
transform exists.

Thus we have the following general principle:

When taking the Laplace-Stieltjes transform Lr_g of functions in
a differential equation, we may instead take the ordinary Laplace
transform, L.

Example 2.29. Let us solve the differential equation
X(t)=681),  x(0)=0.

First note that this equation can be interpreted in the sense that
. . . / __ [0 /

both sides are linear operators [1.6., X[f]= [T f(O X (1) dt for, say,

continuous f, which vanishes outside a finite interval]. Applying

Lr_s to both sides,

sL(x) = Lr-s(8) =1,
and
1
L(x) = 3

sothatx(t)=1,t > 0.
Note, however, that the initial condition x(0) = 0 is not satisfied,
but if we define x(t) = 0 for t < 0, then lim;_, - x(t) = 0. Moreover,

X(1) = u(),
the unit step function (compare with (2.32)).

Applications. The manner in which the Dirac operator has come
to be used in modeling a sudden impulse comes from consideration
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Uab (t)

(0] a b t FIGURE 2.10

of the step function (Example 1.26):

uap(f) = & ! (ua(®) — up(D)), bh>a>0

—a
(Figure 2.10). Note that u,,(t) has the property

/OO ugp(t)dt = 1. (2.38)

o0

In order to simulate a sudden “impulse,” we let b approach a and
define

Aa(t) = lim gy (1). (2.39)

Then A,(t) = 0 for all t # a and is undefined (or oo if you like) at
t=a.

From another perspective, let f be continuous in some interval
[, B] containing a, with @ < a < b < B. Then

oo 1 b
/_ N fO uan(t) dt = -— /a £(6)dt
=f(©

for some point ¢ € [a, b] by the mean-value theorem for integrals
(Figure 2.11). Taking the limit as b — a, we get f(c) — f(a), that is,

lim / SOua) dt = f(a). (2.40)

This suggests in a heuristic sense that if only we could take this
limit inside the integral (which is not possible), then coupled with
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|
|
|
|
|
|
|
b B ' FIGURE 2.11

(2.39) we would arrive at the expression

| roama=s@.

This formula has absolutely no meaning in the Riemann integral
sense (remember that A,(t) is zero except for the value oo at t = a),
but we have already given such an expression a rigorous meaning
in the Riemann-Stieltjes sense of (2.33).

Again, in (2.38), if only one could take the limit as b — a inside
the integral, we would have

/ Ag(Hydt =1,

also achieved rigorously in (2.35).
As far as the Laplace transform goes, we have

—as __ e—bs

e

L )= ——
(uab( )) s(b—a)

as in Example 1.26. Letting b — a and applying I'Hopital’s rule,

—as —bs

e —
i a =lim ———— =¢™ . 2.41
})m; E(u b(t)) %mg b —a) € (2.41)

Since limy—, uap(t) = A1), it is tempting (but meaningless) to write

1im £(ua(6) = £(Au(0),
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and hence by (2.41), equating the two limits
L(A(D) =e.

This is just the expression obtained in (2.37).

The foregoing illustrates that the mathematical modeling of a
sudden impulse is achieved rigorously by the treatment given in
terms of the Riemann-Stieltjes integral.

Hereafter, for the sake of convenience, we will abuse the notation
further and simply write

L(8)=¢e"*.
Example 2.30. A pellet of mass m is fired from a gun at time t = 0

with a muzzle velocity vg. If the pellet is fired into a viscous gas, the
equation of motion can be expressed as

m@—i-kd—x—mv 5(t) x(0)=0, ¥ (0)=0

dtz dt - o ) - ’ - )
where x(t) is the displacement at time t > 0, and k > 0 is a constant.
Here, x'(0) = 0 corresponds to the fact that the pellet is initially at

rest for t < 0.
Taking the transform of both sides of the equation, we have

ms® L(x) + ks L(x) = mvy L(8) = m vy,

mug Vg
£ = ms> +ks s(s+ k/m)’
Writing
) A B
s(s + k/m) s * s+ k/m’
we find that
ATV g mu
k' k'
and
L0 = muvy/k muvy/k

s+ k/m’
The solution given by the inverse transform is

m Vo kg
x(t) = T(l —e )
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x(t)

muvg

0 t  FIGURE 2.12

) t FIGURE 2.13

(Figure 2.12). Computing the velocity,
X(t)=vpe ',

and lim,, o+ ¥'(t) = v, whereas lim,, - ¥'(t) = 0, indicating the
instantaneous jump in velocity at t = 0, from a rest state to the
value vy (Figure 2.13).

Another formulation of this problem would be

d*x L dx
m — —_— =
dr? dt
Solving this version yields the same results as above.

0, x(0) =0, ¥ (0)=uv,.

Example 2.31. Suppose that at time t = 0 an impulse of 1V is
applied to an RCL circuit (Figure 2.6), and for t < 0, I(t) = 0 and the
charge on the capacitor is zero. This can be modeled by the equation

L—I—I—RI—}-—1 ftI dr = §(t
7T)at =

where L, R, and C are positive constants, and

. L _R .
@ Z> (i)

RZ
) < —.
4 4

Ol
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P

Applying the Laplace transform gives
1
LsL(D+RLMN + — LD =1,
s

that is,
s

L) =
@0 Ls>+Rs+1/C

N
~ L[(s+ R/2L)* + (1/LC — R%/4L%)]|

Setting a = R/2L, b* = 1/LC — R?/4L? > 0, assuming (i), then,
g g

s
L= ——F+—
@D (s + a)? + b?
s+a a
= — 2.42
(s+a)Y+b* (s+a)P+Db? (2-42)
and so
e—at a
I = 7 (cosbt—z smbt).

Assuming (i), (2.42) becomes

LLT) — s _ s+a _ a
(D= (s+a2—Dp> (s+a)P—Db (s+a)*— D>

with a = R/2L, b* = R?>/4L* — 1/LC > 0. Consequently,

6—at
I(t) =
="
A Mechanical System. We consider a mass m suspended on a
spring that is rigidly supported from one end (Figure 2.14). The rest
position is denoted by x = 0, downward displacement is represented
by x > 0, and upward displacement is shown by x < 0.
To analyze this situation let

cosh bt — s sinh bt ) .
(cosh e — 7 sinh )

i. k > 0 be the spring constant from Hooke's law,

ii. a(dx/dt) be the damping force due to the medium (e.g., air),
where a > 0, that is, the damping force is proportional to the
velocity,

iii. F(t) represents all external impressed forces on m.
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position

FIGURE 2.14

Newton’s second law states that the sum of the forces acting on m
equals m d?x/dt?, that is,

md—zx = —kx—a@ + F(t)
dAt? dt '
or
d’x dx
mﬁ+aa+kx:F(t) (2.43)

This equation is called the equation of motion.

Remark 2.32. If a = 0, the motion is called undamped. If a # 0,
the motion is called damped. If F(t) = 0 (i.e., no impressed forces),
the motion is called free; otherwise it is forced.

We can write (2.43) with F(t) = 0 as

Fx ade k.
a2 m dt
Setting a/m = 2b, k/m = A?, we obtain
d +2b s + 2*x = 0. (2.44)
dr? dt

The characteristic equation is
rt 4 2br + 2% =0,

with roots

¥ =—bx+Vb*— 22
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x(t)

7\/\/\/\
0 \/\/\/t

FIGURE 2.15

The resulting behavior of the system depends on the relation be-
tween b and A. One interesting case is when 0 < b < A, where we
obtain

x(t) = e*hf(cl sin mt + ¢y CcOs Mt),

which after some algebraic manipulations (setting ¢ = +/c¢? + ¢3,
cos ¢ = ¢y/c) becomes

x(t) = ce " cos(v/A2 — b2t — ¢).

This represents the behavior of damped oscillation (Figure 2.15).
Let us apply a unit impulse force to the above situation.

Example 2.33. For 0 < b < A, suppose that

a +2b dx + A%x = 8(t) x(0)=0, ¥(0)=0
dr? dat ' ’ '
which models the response of the mechanical system to a unit
impulse.
Therefore,

LX)+ 2b LX)+ A2L(x) = L(8) =1,
so that

L) = ———
(%) s 4 2bs + \2
1

T s+ b+ (W —bY)




Exercises 2.5 87

and
1 bt
x(t) = Wi e P sin(v/A2 — b21),

which again is a case of damped oscillation.

Exercises 2.5

1. Solve

LYW oy=s, w0 =y(©) =0
dr? dt ' '
2. The response of a spring with no damping (a = 0) to a unit
impulse at t = 0 is given by

2
d 32

Determine x(t).
3. Suppose that the current in an RL circuit satisifies

+kx=48(),  x(0)=0, x'(0)=0.

LdI+RI—Et
dt - ()V

where L, and R are constants, and E(t) is the impressed voltage.
Find the response to a unit impulse at t = 0, assuming E(t) = 0
fort < 0.

4. Solve

dz + dx + kx = §(t

— +a—+kx= ,

"ar dt )
form=1,a=2k=1,x0)=x(0)=0.

5. Show that if f satisfies the conditions of the derivative theorem
(2.7), then

L7Y(sF(s)) = (1) + £(0) ().

1 (S—a —at
=§(t) — 2 .
(s—i—a) ® ae

6. Show that
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7. A certain function U(x) satisfies

1
aZU”—bZUz—E(S, x>0

)

where a and b are positive constants. If U(x) — 0 as x — 00, and
U(—x) = U(x), show that
1 b
UR) = —¢ "
@) 2ab

[Hint: Take U(0) = ¢, U'(0) = 0, where c is to be determined.]

2.6 Asymptotic Values

Two properties of the Laplace transform are sometimes useful in
determining limiting values of a function f(t) ast — 0 or as t — 00,
even though the function is not known explicitly. This is achieved
by examining the behavior of L(f(1)).

Theorem 2.34 (Initial-Value Theorem). Suppose that f, f satisfy
the conditions as in the derivative theorem (2.7), and F(s) = L(f (t)).
Then

foh = lirgl+ f(t)y=lim sF(s)  (sreal).

Proor. By the general property of all Laplace transforms (of func-
tions), we know that E(f/(t)) = G(8) - 0 as s — oo (Theorem 1.20).
By the derivative theorem,
G(s) = sF(s) — f(01), s > a.
Taking the limit,
0= lim G(s) = lim (sF(s) — f(01)).
§—> 00

§—> 00

Therefore,
£(0M) = lim sF(s). -
§—> 00
Example 2.35. If

s+1

L(f() = GoDE12)



2.6. Asymptotic Values §Q

then

T S+1 .
o0 =tims (=) =1

Theorem 2.36 (Terminal-Value Theorem). Suppose that f satis-
fies the conditions of the derivative theorem (2.7) and furthermore that
lim;—, o f(t) exists. Then this limiting value is given by

tli)rgo f(t) = li_r)%sF(s) (s real),
where F(s) = L(f(1)).

Proor. First note that f has exponential order o = 0 since it is
bounded in view of the hypothesis. By the derivative theorem,

G(s) = L(f'()) =sF(s) = f(07) (s> 0).
Taking the limit,
lim G(s) = lim s F(s) — f(oh). (2.45)

Furthermore,

o
lim G(s) = lim / e Sf'(t) dt
s— 0

s—0

= /Oof/(t) dt, (2.46)
0

since in this particular instance the limit can be passed inside the
integral (see Corollary A.4). The integral in (2.46) exists since it is
nothing but

| roa=pm [“roa
= lim /(1) ~ F(0")} (2.47)
Equating (2.45), (2.46), and (2.47),
fm 0 = s
Example 2.37. Let f(t) = sint. Then

0

lirgs ) = i 2 =

)
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but lim;, f(t) does not existt Thus we may deduce that if
lims_ g sF(s) = L, then either lim,, f(t) = L or this limit does
not exist. That is the best we can do without knowing a priori that
lim,_, o f(t) exists.

Exercises 2.6

1. Without determining f(t) and assuming f(t) satisfies the hy-
potheses of the initial-value theorem (2.34), compute f(0)
if

s® + 3a*s

@ L6O) = 5y

) cin) = L

T
s+a

@)kg(s+b) (a # D).

2. Without determining f(t), and assuming f(t) satisfies the hy-
potheses of the terminal-value theorem (2.36), compute tlim f()
— 00

if

(n=0)

s+b
=—— (b>0
@ L60) = e @20
_ 1 1 (a
) L(f) = S ttan <§>
3. Show that
11—{% S(s2 + a?)?
exists, and
t . S
E (Z smat) = m,
yet

t
lim — sinat
t—00 2a

does not exist.
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2.7 Convolution

The convolution of two functions, f(t) and g(t), defined for t >
0, plays an important role in a number of different physical
applications.

The convolution is given by the integral

(f *)(®) =/0 f(D)g(t = n)dr,

which of course exists if f and g are, say, piecewise continuous.
Substituting u = t — t gives

(F % 8)(H) = /0 g(W)f(t — ) du = (g % (D),

that is, the convolution is commutative.
Other basic properties of the convolution are as follows:

() c(f xg) =cf xg = f *cg, c constant;

(i) f*(gxh)=(f xg)*xh (associative property);

(iii) f*(g+h)=(f*xg)+ (f *h) (distributive property).
Properties (i) and (iii) are routine to verify. As for (ii),

[f * (g * WD)
= /O f(D(g*xh)(t—1)dr

= /tf(r) </trg(x)h(t — r—x)dx) dr
0 0

:/t (f}(t)g(u—r)h(t—u)du) dt (x=u—1)
0 T
= /t (fuf(r)g(u— r)dt) h(t —uw)du
0o \Jo
= [(f *g) *h](D),

having reversed the order of integration.
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Example 2.38. Iff(t)=¢', g(t) =t, then

(f *8)(®) :/0 ¢'(t—n)dr

t t

=te'| —(ref —¢°
0 ( )o

=c —t—1.

One of the very significant properties possessed by the convolu-
tion in connection with the Laplace transform is that the Laplace
transform of the convolution of two functions is the product of their
Laplace transforms.

Theorem 2.39 (Convolution Theorem). If f and g are piecewise
continuous on [0, 00) and of exponential order o, then

LIf*)O] = LFD) - L(g®)  (Re(s) > ).

Proor. Let us start with the product

L(f(t))-ﬁ(g(t)):( /0 e‘”f(r)dr) ( /O e_sug(u)du>

= foo (foo e Tf(T) g(u) du) dr.
0 0

Substituting t = t + u, and noting that 7 is fixed in the interior
integral, so that du = dt, we have

L) - L(gD) = fo ( f e Sf(t)g(t — 1) dt) dr. (2.48)

If we define g(t) = 0 fort < 0, theng(t —7) = 0 fort < 7 and we
can write (2.48) as

L) L(g®) = fo /0 e f(Dg(t — v)dtdr.

Due to the hypotheses on f and g, the Laplace integrals of f and g
converge absolutely and hence, in view of the preceding calculation,

/OO /OO e f(Dg(t — )| dtdr
0 0
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converges. This fact allows us to reverse the order of integration,*
so that

L(f(1) - L(g(1) = / / e f(Dg(t — 1) drdt

- /Ooo ( /O e - D dr) dt
/0006_“ (/Otf(f)g(t = ‘L')d‘l,') at

= L[(f *g)(D)]- U
Example 2.40.
1
L at bt — )
* )= e =D
Moreover,
£_1 1 — eat * ebt
(s—a)(s—Db)
t
:/ et 6b(t—1)dr
0
et — 6bt
=y 47h
*Let

n+1 m+1 n+1 m+1
am= [ [ meonadn b= [ [ ne s

so that |Dyy,| < . If
/ / |h(t, T)| dt dr < oo,
0 0

then Y 02 3™ an, < oo, implying > 02 ' >"* |b,.| < co. Hence, by a standard
result on double series, the order of summation can be interchanged:

2 B =22 o

n=0 m=0 m=0 n=0

/ / h(t,t)dtdr = / f h(t, T)dr dt.
0 0 0 0

ie.
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Example 2.41. Find

L1
¢ (sm)

Previously we applied a partial fraction decomposition. But we can
also write

1 1 1

sz(s—l)_sz's—l

)

where L(t) = 1/s*, L(e") = 1/(s — 1). By the convolution theorem,

1
— = L(txe"),
s2 s—1 ( )
and thus
1
L ———)=txe
s?(s—1)
= —t—1
by Example 2.38.
Example 2.42.
? 1) 1)

Q) =

(2 + w2 2+w? s+

= L(sin wt * sin wt),

so that

1 w? . .
L — | =sinwt * sin wt
(s? + w?)?

t
= / sinwrtsinw(t — 1) dr
0

1
= Z—(Sin wt — wt cos wt).
w
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Similarly,

(i) £ BRI cos wt * sin wt
(s24+w?)?) o
1 t
= —/ coswtsinw(t — 1)dr
0

w

= — tsin wt.
2w

Here we have used the fact that
sin(A — B) = sin A cosB — cos A sin B

to compute both integrals.
These examples illustrate the utility of the convolution theorem
in evaluating inverse transforms that are products.

Error Function. The error function from the theory of probability
is defined as

2 (" .
erf(t):ﬁ </0 e dx.

Note that
2 & 2
lim erf(t) = — e dx=1 2.49
lim erf(t) = —= /0 (249)
by Example 2.1 (Figure 2.16). The error function is related to Laplace

transforms through the problem (see also Chapters 4 and 5) of
finding

()

erf (t)

FIGURE 2.16
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We know from (2.5) that

()=

and also that £(e') = 1/(s — 1). Then by the convolution theorem,

- 1 _ 1 ¢
. <¢§<s—1>>‘m*6
! 1 t—x
:\/O\/ﬁﬁ d)(

t t ,—x
:6_/6_61){.
v lo Vx

Substituting u = /x gives

1 2e (VP
L1 ( ) ¢ e % du

Vss=1)) 7 Jo
= ¢ erf(V/1).
Applying the first translation theorem 1.27 with a = —1 yields
1
L(erf(v/1)) = .
( ( )) svs+1

Beta Function. If f(t) = t*7! g(t) =t""! a,b > 0, then

(f *2)(t) = /O t Tt — o de
Substituting t = ut,
(f xg)(t) = t*+0! /0 1 w1 — wyPdu. (2.50)
The term
B(a,b) = fol w1 — w)du (2.51)
is known as the beta function. Then by the convolution theorem,

L(t“*"71B(a, b)) = L(t“"H L")

AONG)
= W
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by (2.2). Therefore,
ta-i-b—lB(a b) — L—l <F(a) F(b))

Sa+b
patb—1
= I'(a) r(b)m, (2.52)
and we obtain Euler’s formula for the beta function:
B(a,b) = 11:((62—41?5)). (2.53)

Calculating B(1/2,1/2) in (2.51) with u = sin*#, we find from
(2.53)

that is,

r()=vr (2.54)
since I'(1/2) > 0. See also Example 2.1.

Bessel Function. This important function is the solution to the
Bessel equation of order v,

daz d
t* d—é’ +t d—? +(t* =y =0, (2.55)

and is given by (the solution to (2.55) has a = 1)
( 1))’1(at)2n+l)
v(at P P —
Julat) = Z « 22ntvpl(n 4 )l
where (n+v)! =I'(n+v+1). Forv =0,
B ( 1) a2nt2n oo -
]O(at) ZO Zzn(n')z ; aZVlt

(Figure 2.17). Jo(at) is a bounded function and
|a|2n |a|2n

22 (mh2 — (2n)!

|a2n| =
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Jo(at)

0 \_/ t

FIGURE 2.17

The latter inequality forn = 0,1, 2, - - - can be verified by induction.
Taking o« = |a| in Theorem 1.18 means that we can take the Laplace
transform of Jy(at) term by term.

Hence,

oo _nZn

]O(at) 2(:) 22}1( |)2 ZW)

( 1)” Zn(zn)l
- Ceen

22n(n|)282n+1

(D@ (a*)"
B Z 20(n1y ( )

s2

_ 1 S R
(7)) ®o-w

1
~Era

Here we have used the Taylor series expansion

(=v'ent
Z Py (6l < 1

1 +x2
with x = a/s.

Integral Equations. Equations of the form

f(t)Zg(t)+f0 k(t, o) f(v) de
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and

g(t) = f K(t, ) f (1) dz

are known as integral equations, where f(t) is the unknown function.
When the kernel k(t, 7) is of the particular form
k(t,7) = k(t — 1),

the integrals represent convolutions. In this case, the Laplace
transform lends itself to their solution.
Considering the first type, if g and k are known, then formally

L(f) = L(g) + L(f) L(k)
by the convolution theorem. Then

_ L©

and from this expression f(t) often can be found since the right-hand
side is just a function of the variable s.

Example 2.43. Solve the integral equation
t
x()=e '+ / sin(t — 1) x(7) dt.
0
We apply the Laplace transform to both sides of the equation so that
L(x(t)) = L(e™) + L(sint) L(x(1))

and
L(e™)
L(x(1) = ———
(x(1) 1 — L(sint)
B s2 41
CS2(s+1)
_ 2 1
Ts+1 0 2 s
Hence

x(t)=2e"+t—1.
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0] z  FIGURE 2.18

As an example of an integral equation of the second type, let
us consider a classical problem from the 19th century. A particle
is to slide down a frictionless curve with the requirement that the
duration of descent (due to gravity) is independent of the starting
point (Figure 2.18). Such a curve is called a tautochrone.

An analysis of the physics of the situation leads to the (Abel)
integral equation

Y fuyd
Ty = \/_/ f(u) “ (2.56)

where T is a constant (time), g is the gravitational constant, and f(u)

represents ds/dy at y = u, where s = s(y) is arc length. The integral

(2.56) then is the convolution of the functions f(y) and 1/,/y.
Taking the transform gives

an=j%£mwﬂ(j§,

and so by (2.4)

J2g To/
L(fy) = Y22
/s
Therefore,
28/
L(f(v) = i”n=§

The inverse transform gives

f) =—. (2.57)

Qle
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Since

_ds _ | (Y
f) =4 = +(@)

we arrive at the differential equation

dx\?> 2
(5 -5
ay Y
2 _
x:/ /C ydy.
Y

Setting y = ¢? sin(¢/2) leads to

invoking (2.57). Then

c? c?
X:E(()ﬁ-i_Sin(p)r y:E(l_COSgD)r

which are the parametric equations of a cycloid.

Exercises 2.7

1. Use the convolution theorem to find the following:

» 1 » 1

(@) £ <(s—1)<s+2)) ) £ (s(s2+1)>
-1 1 -1

© £ () @ ()
-1 S

() £ ((s2+1)3)'

2. Prove the distributive property for convolutions:

fx@+h)=f*xg+fx*h.

3. Show thatiff and g are piecewise continuous and of exponential
order on [0, 00), then (f * g)(t) is of exponential order on [0, 00).
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4. Use the convolution theorem to show that
t
/ cos T sin(t — 1)dr = %tsin t.
0
5. Show that
1 t
yi) = — / (o) sinhw(t — 7)dr
w Jo
is a solution to the differential equation

Y —oty=f(1), y0)=y0)=0,

for f continuous of exponential order on [0, 00).
6. Determine

(a) £ (s\/sl+_a> (b) L(e*erfVat)
(c) L(tertyat).
7. Find
(@) £ ( c ) (b) £~ (;)
Vi +1 sv/s? + a?

1
8. Evaluatef u_%(l —u)%du.

0
9. The modified Bessel function of order v is given by I,(t) =
UL (A = Yoo, t27Y/22 00 (n 4 v)!. Show that

L(Io(at)) = (Re(s) > lal).

1
/2 — 42

10. Solve the following integral equations:
(@ x(H)=1+ /Ot cos(t — 1) x(7)dr
(b) x(t) =sint + /Ot ex(t —1)dr
(c) x(t) = fot(sin )x(t —1)dr
(@) te™ = /0 t x(7) x(t — 1) dr.

11. Solve the integro-differential equations
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(@ X+ /tx(t — 1) dt = cost, x(0)=0
0

(b) sint = / X (D) x(t — 1) dr, x(0) = x'(0) = 0.
0

12. Solve the initial-value problem

y' =2y =3y=f(), y0)=y0)=0.

2.8 Steady-State Solutions

Let us consider the general nth-order, linear, nonhomogeneous
differential equation with constant coefficients

Y 4 iy a4+ agy = f(0) (2.58)
for f € L, and with initial conditions
YO) =y (0) = =y"D(0) =0, (2.59)
To be more precise, we should really say
y(OH =y (0N = =y"""(0"H =0,

but we shall continue to employ the conventional notation of (2.59).
A solution of (2.58) satisfying (2.59) is called a steady-state
solution. By (2.22), proceeding formally,

L) =sLy®), k=01,2....
Thus, the Laplace transform of (2.58) is
(8" + an_18" 4 +ars + a)) L(y(H) = L(F(D)),

or

L(f(t)
L(y() = %,

where Q(s) = 8" + ap_18""' 4+ -+ + a;s + ao.
Suppose that

(2.60)

o ~ A0
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for some function g(t). Then
L{y) = L(F(0) £(e(1)
= L[(f *g)(®)]

and
t t
vy = [ fmse—nar= [ sofe-nd (2.61)
Since
Q(s) L(g(M) =1,
in other words,
(8" + an_18""' + -+ ars +ao) L(g(1) = L(8(1)),
we may consider g = g(t) to be the steady-state solution of
8"+ au1 g+ g + agg = 8(D). (2.62)

This means that we can determine the solution y = y(t) via (2.61)
by first determining g = g(t) as a steady-state solution of (2.62).
In this case, g(t) is known as the impulsive response since we are
determining the response of the system (2.58) for f(t) = 6(¢).

Example 2.44. Find the steady-state solution to
Yy —y=fy=¢"

by first determining the response of the system to the Dirac delta
function.

For g" — g = §(D),
s°L(g) — L(g) =1,
namely,

172 1/2
1 s—1 s+1'

1
L) =5—
so that

t 1 t 1 —t
=-e—=-e .
g(t) 5 5
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By (2.61),

yt) = ft Lo — Lo} oeoae
s \27 T2

1 t
— 62t/ (6—‘[ _ 6—3f) d_L,
0

2

1 2t 1t 1 —t
=—-¢e¢" —=—e +—-¢e .

3 2 6

This approach, while seemingly cumbersome, comes into its own
when the impulse response g(t) is not known explicitly, but only
indirectly by experimental means.

By the same token, it is also worthwhile to determine the re-
sponse of the steady-state system (2.58)/(2.59) to the unit step
function, u(t).

To this end, if f(t) = u(t), the (indicial) response h = h(t) satisfies

h + a, B - ag )+ agh = u(t),

(2.63)
h(0) =N (0)=--- =h""D(0) = 0.
Moreover,
L(u(t)) 1
L(h()) = = ,
(") =56 ~saw

Revisiting (2.60) with 1/Q(s) = s L(h(1)),

L{y(®) = sL(~®) L(f(H)
=L(H®) L) (h(0)=0)
= LW * (1))

Therefore,

y(t) = /0 Wfit—rtdr= -/0 f(O Wt —1)dr. (2.64)

Once again we find that the steady-state solution of (2.58)/(2.59)
can be determined by a convolution of a particular function with the
input, f(t), in this case the steady-state solution h(t) of (2.63).

Note that in the preceding we could have witten

L(y(0) = s L(f(1) L(n(®)
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= [£(F'0) + (] £(n(0),
and consequently
yt) = /0 f'(0)h(t — 1) dt + f(0) h(1). (2.65)

This approach involving the convolution with the indicial response
is known as the superposition principle.

Example 2.45. For the steady-state problem in Example 2.44 and

f(8) = u(t),
1
SL(h(®) = L(h(0) = L{u(t) = -,
that is,
1 1/2  1/2
£ho) = GG+ s s—1tsqr
and

1 1
h(t)=—-14+—-¢e" 4+ -¢7",
() 2 2
1 1
Wity=-¢e —-¢e'
(=3¢ =57
the latter quantity being exactly the expression obtained for g(t) in
the previous example. Then

(it = f R (Df(t - 1) dr

1 2t 1 t 1 —t
=—-e¢" —=—e +—-¢e
3 2 6

as before.

Let us go back to the polynomial Q(s) of (2.60) and suppose that
all of its roots «y, &z, - - -, o, are simple, so that we have the partial
fraction decomposition

1 A I
= =L Are™' ] .
Qs) = s—a (Z : )

k=1
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Putting this expression into (2.60) gives

L(y() = L(f(1) (ZAke)

and so

y0) = [ £ ) e
k=1

= Zn: Ay /0 t f(r)e™dr. (2.66)
k=1

Since

S — U
A = lim

S—> o Q(s)
we can write
S — U
Ar = lim

s=ar Q(8) — Qo)
1

Q)
invoking I'Hopital’s rule [Q'(ax) # 0 from Section 3.4 since the axs
are simple].

A fortiori (2.66) becomes

k=1,2,...,n

W=y Q,(a ) f f(r) et dr, (2.67)

k=1

the Heaviside expansion theorem.

Exercises 2.8

1. Solve the following steady-state problems by first determining
the response of the system to the Dirac delta function and then
using equation (2.61):

(@) ¥ +y —2y=de”
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(b)) ¥y’ —y=sint
(©) ¥y’ —2y" — 5y + 6y = 2t.

2. Solve parts (a), (b), and (c) of Question 1 by first determining the
response of the system to the unit step function and then using
equation (2.64) or (2.65).

3. Solve parts (a), (b), and (c) of Question 1 directly by using the
Heaviside expansion theorem (2.67).

4. A mass attached to a vertical spring undergoes forced vibration
with damping so that the motion is given by

d’x  dx ,

ﬁ—i-a—i-ZX:smt,
where x(t) is the displacement at time t. Determine the
displacement at time t of the steady-state solution.

2.9 Difference Equations

A difference equation expresses the relationship between the values of
a function y(t) and the values of the function at different arguments,
y(t + h), h constant. For example,

yt—1) =3y +2y(t —2)=¢,
y(t+ 1) y(t) = cost

are difference equations, linear and nonlinear, respectively.

Equations that express the relationship between the terms of a
sequence ag, ai, dz, . . . are also difference equations, as, for example,

Qnao — 3apa1 + 2a, = 5" (linear),
Gn41 = 2a>  (nonlinear).

As we will see, the function and sequence forms are not as unrelated
as they may appear, with the latter easily expressed in terms of the
former. Both of the above linear forms are amenable to solution by

the Laplace transform method.
For further reading on difference equations, see Mickens [8].
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Example 2.46. Solve

ytH) —y (t — g) = sin wt, yit)y=20, t<0.

We compute

(e-2))= [ erul-D)a

= /_00 e_s(”g)y(t) dr (r =t— z)

x

s ©
e o / e Ty(r)dr
0

= e*%E(y(t)).
Therefore, taking the Laplace transform of both sides of the
difference equation,

L) = FLEO) =

+ w?’
or
w
£ly®) = (2 +wd)(l—ev)
and
sinwt 2% < t < W
yt) = 0 QDT _ . _ @nie n=012...,

the half-wave-rectified sine function given in Example 2.6.

In order to solve difference equations that are in sequence form,
the following result proves instrumental.

Example 2.47. f(t) = al'l, where [t] is the greatest integer < t,
a > 0 (Figure 2.19). Then f(t) has exponential order (Exercises 2.9,
Question 1) and

L(f(1) = /0 e f (1) dt

1 2 3
= / e Staldr + / e Staldr + / e Staldt + - - -
0 1 2
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2“] |
22 = 4 —
| |
21 = 24 — |
0 1 2 3 t  FIGURE 2.19
1—¢g 8 ale=s — e—Zs 612 a—Zs _ 6—35
_ L ), @ ),
S s s
1—¢8

= (1+ae+a*e*+--)
N

_ Lo R 0,1
= 0 —a) (Re(s) > max(0,log a)).

Let us then turn to the following type of difference equation.

Example 2.48. Solve
Apyo — 30p41 + 2a, = 0, a=0, ay =1.
To treat this sort of problem, let us define
Yy(t) = ap, n<t<n4+1, n=012....
Then our difference equation becomes
y(t+2) = 3y(t+ 1)+ 2y(t) = 0.

Taking the Laplace transform, we first have
o
Ly(t+2) = / e Syt +2)dt
OOO
= / e STy (1) dr (t=t+2)
2

e8] 2
= 628/ e y(t)dr — eZS/ e Ty(r)dr
0 0

(2.68)
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1 2
= e*L(y(1) — 623/ e Tapdr — ZZS/ e aydr
0 1

= 8235@(0) — e’ (L‘g_zs)

S
= e"L(y(n) - =1 —e)

since ap =0, a; = 1.
Similarly,

L{y(t+ 1) = e’L{y(0).
Thus the transform of (2.68) becomes
e*L(y(h) — %(1 — e = 3e’L(y() + 2L(y(1)) =0,

or

el —e™®)
LO) = o —ae 12

_e(l—-e™) 1 1
- S es—2 e—1

_1—@‘3 1 1
o S 1—2e8 1—es

o 1—e 1—¢°
S(1 — 2e79) B s(1 —e™®)
= L2 — L)

by Example 2.47. The solution is then given by (equating the
expressions for y(1))

a, =2"—-1, n=01,2....
Checking this result: a,4y = 2" — 1, a1 = 2" — 1, and so
(2}’[4‘2 _ 1) _ 3(2”"1‘1 _ 1) + 2(2}’1 _ 1) — 2”"‘2 _ 3 . 2}’1“1‘1 + 2 . 27’!
— 2 . 271-‘1—1 _ 3 . 2}’1-‘1—1 + 27’1-‘1—1
=0,

as desired.
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If in the preceding example the right-hand side had been
something other than 0, say

n
Ap42 — San—H + 2a, = 37, ap =0, o =1,

it would have transpired that

L3I
Lyt)=LENh -0+ ———
(W) = L2 ()+628_3es+2
and
g(g[f]) B 1—¢e° 1
e —3es+2  s(1—3es) €35 — 3¢5 + 2
B ef—1
s(es — 3)(es — 2)(es — 1)
:es—l % _ 1 + %
S es —1 es — 2 esS—3
— 1 1
:1—65 i 1 " 2
S l1—e¢S 1—2¢e5 1—3e°
1 ; 1 ¢
=5 LM - £+ 5 L3
Whence
1.1
a, = - 3" — =, n=012....
2 2

Linear difference equations involving derivatives of the function
Y(t) can also be treated by the Laplace transform method.

Example 2.49. Solve the differential-difference equation
VO -yt-1 =40, yH=yO=0, t=<0.
Similarly, as we saw in Example 2.46,
Lyt = D) = e L(y(1).

Then transforming the original equation,

SL(Y(H) — e L(y(b) = 1,
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so that

! ! (Re(s) > 0)

L) = 5= = (1 _ e_>

s2

o0

¢ (Re(s) > 1).

= L gon+2

Observe that by (1.9) and (1.14)
_ n)ZVH—l

. e Ms B (f
£ <s2n+2> = 1

{ (t*H)ZVHﬂ t— >n

2n+1)! =
0 t<n.

Hence by (2.69) and (2.70) and the linearity of £,
— )2t )

Llye) = (Z (2n + 1)!

and
n)2n+1

(t—
Y = Z 2n+1)

Exercises 2.9

1. Show that the function
f(t) = a", t >0,

has exponential order on [0, 00).
2. (a) Show that the function

f& =11, t>0,

has Laplace transform

1
Lf0) = sE@—1) sd-e5)

(2.69)

(2.70)
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(b) Show that the solution to

yt+1) —-yit) =1, yt) =0, t<1,

is given by the function in part (a).
3. From the expression
e’ e’
—=—(1+ae™® +ate™® + .. ),
s(1 —ae™%) S

deduce that

fy=2L" (—es ): Qa7 =zl

S(1 —ae~s n=l1
( ) 0 0<t<l,
and fora # 1,
e s al —1
fty=2L" = :
s(1 —ae™%) a—1
4. Solve for ay:
(a) antr — 7ap41 +12a, =0 ay=0, a =—-1
(b) any2 — 7an41 +12a, = 2" ap=0, a =-—1
(C) an+1 + an = 1, ap=0, a =1
(d) any2 — 2ap41 +a, =0, ag=0, a =1.

5. The Fibonacci difference equation is given by
Atz = Ony1 + ap, ap=0, a =1.

Deduce that

1 1+ﬁ n l_ﬁ n
e 5[5 (5] e

6. Solve

(@) yO+yt—1)=¢, y(t)=0, t<0
M y®) —yt-1)=t, y®) =0, t=<0.

7. Find a,, if

Ap+p — SApy1 + 6a, = 4n + 2, ar=0, a =1.



- Complex
~ Variable
cureren  THEOTY

In this chapter we present an overview of the theory of complex
variables, which is required for an understanding of the complex in-
version formula discussed in Chapter 4. Along the way, we establish
the analyticity of the Laplace transform (Theorem 3.1) and verify the
differentiation formula (1.15) of Chapter 1 for a complex parameter
(Theorem 3.3).

3.1 Complex Numbers

Complex numbers are ordered pairs of real numbers for which the
rules of addition and multiplication are defined as follows: If z =
(*xy), w = (u,v), then

zHw=x+uy+v)
zw = (xu — yv, xv + yu).

With these operations the complex numbers satisfy the same arith-
metic properties as do the real numbers. The set of all complex
numbers is denoted by C.

115
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We identity (real) a with (g, 0) and denote i = (0, 1), which is
called the imaginary number. However, it is anything but imaginary
in the common sense of the word. Observe that

z=xyYN=x0+0,y)=%0+ Yy 0)(0,1)=x+yi =x+1y.

It is these latter two forms that are typically employed in the theory
of complex numbers, rather than the ordered-pair expression. But
it is worth remembering that the complex number x + iy is just the
ordered-pair (¥, y) and that i = (0, 1). Moreover,

2 =(0,1)(0,1) = (—1,0) = —1,

which can also be expressed as i = +/—1.

The real part of z = x+1iy, written Re(z), is the real number x, and
the imaginary part, Im(z), is the real number y. The two complex
numbers z = x + iy, w = u + iv are equal if and only if x = u and
Yy = v, that is, their real and imaginary parts are the same.

The modulus (or absolute value) of z is |z| = r = /x> + y?, and
|zw| = |z| lw|. As with real numbers, the triangle inequality holds:

|z +w| < |z| + |w].

The conjugate of z = x 4+ 1y is given by z = x — iy (Figure 3.1). Thus,
zZ=z?andz+w =Z+w,zZw = ZW.

2| =

FIGURE 3.1



3.1. Complex Numbers 117

Complex numbers can be depicted in a plane known as the com-
plex plane (Figure 3.1), also denoted by C. The x-axis is called the
real axis and the y-axis the imaginary axis. The complex number z
can also be thought of as a vector that makes an angle 6 with the real
axis, and 6 is called the argument of z, denoted by arg(z). Clearly,

X =71cosé, Yy =rsinéb,
and

tanf =

x| <

Thus, we have
z=x+1y =r(cosf +isinbh),

the polar form of z.
If z =r(cos @ +isin#) and w = R(cos ¢ + isin ¢), then

zw = TR [(cos 0 cos ¢ — sin @ sin @) 4 i(sin 6 cos ¢ + cos @ sin go)]

- VR[ cos( + ) +1sin(6 + (p)].

In other words, the arguments are additive under multiplication.
Thus,

z* = r*(cos 260 + isin 26),
and in general,
z" =[r(cos B+ isin0)]" = r"*(cos nb + isin nb),
which is known as De Moivre’s theorem.

The function €” is defined by

¢ = = ¢*(cosy + isiny).

Setting x = 0 gives ¢¥ = cosy + isiny, and the expression (Euler's
formula)

€i9:COSQ+iSil’19, 0<6 < 2m,

represents any point on the unit circle |z| = 1 and leads to the
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Y
z=e
1
6
@) T
FIGURE 3.2
remarkable expression ™ = —1 (Figure 3.2).

In general, therefore, any complex number z = x+iy = r(cos 6+
isin @) can be written as

z=vre".
De Moivre’s theorem now reads
Zn — (V ezé)n — Vneme'

Ifre? =z = w" = R, then w = z'/" and

0 + 2km
R:V%r g0:+—, k=0,41,%£2,---.
n
Due to periodicity we need take only the values k =0,1,---,n—1

to obtain the n distinct roots of z:

zn = i),

For example, the four fourth roots of unity (z = 1) are given by

24 = g2

) k:0’1,2’3'
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that is,

Exercises 3.1

1. Ifz=1+42i, w = 2 — i, compute

(a) 2z + 3w (b) (32)(2w)
3 + 2
c) —+ —.
© -+
2. Find the modulus, argument, real and imaginary parts of
a) (1+19)? (b il
@) (1 +1) )
1 4431
d
© 55 @ 5
(e) (1+ i)30.
3. Write the complex numbers in Question 2, parts (a) and (d), in
polar form.

4. Show that if z is a complex number, then

(@) z+2z=2Re(2)
(b) z—2z=2iIm(2)
(©) IRe(2)] < lzl, ITm(2)| < 2.

5. Prove by mathematical induction that

lz1 + 22+ + 20l Szl + 22 + -+ |24, n>2.
You may assume it is already valid for n = 2.
6. Show that
z—a
— <1
l—az

if|z| < 1and |a| < 1. (Hint: |w|*> = ww.)
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7. Determine the region in the z-plane denoted by
(@) lz— 1l < 1 ()1 <zl <2
b4 3w
(©) ) < arg(z) < - |z| < 1.

8. Write in the form x + iy

(a) €' (b) "™ n=0,+1,42,...
(€) e@Dm =0 +1 42 ... (d)é5.
9. Compute all the values of
(@) V-1 (d) Vi
(©) V1 +1.

3.2 Functions

A complex-valued function w = f(z) of a complex variable assigns
to each independent variable z one or more dependent variables w.
If there is only one such value w, then the function f(z) is termed
single-valued; otherwise f(z) is multiple-valued. Complex-valued func-
tions are in general assumed to be single-valued unless otherwise
stated. For z = x 4+ iy and w = u + iv, one can write

w = f(Z) = M(X, y) + il)(X, y)r

where u = u(x, y), v = v(x, y) are real-valued functions—the real and
imaginary parts of f(2).
For example,

f2) =2 = (" = y*) + 2iny,
g(2) =€ =¢€“cosy+ie siny,
h(z)=c =a+ib (a, b, ¢ constants)

are all (single-valued) complex functions.
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z—plane w—plane

dmi| ‘

2mi|

2

—dmi|

FIGURE 3.3

Complex functions are mappings from a domain in the z-plane
to the range in the w-plane. For example, the exponential function
w = € = €“¢¥Y maps the z-plane in such a way that each horizontal
strip of width 27 is mapped onto the entire w-plane minus the origin
(Figure 3.3). A vertical line at x in one of these strips maps to a circle
of radius ¢* in the w-plane. Note that when x = 0, then 2™ = 1,
n=20,=x1, £2, ..., and z, = 2nmi, n = 0, £1, £2, ... are the only
points that map to w = 1. Likewise z, = (2n — 1)ni are the only
points that map to w = —1.

Functions related to the exponential function are as follows:

eiz _ efiz eiz + efiz
sing = —; c0sz = ———;
21 2
sinz COoS zZ
tanz = ; cotz = — ;
cosz sinz
. & —eg? & +e?
sinhz = — coshz = —
tanh sinh z ( £ 1) ) th cosh z (2 # ni)
anhz = z# (n—3)mwi); cothz = — 7 # nmi);
cosh z 2 sinh z '
1 1
1\ .
sechz = z# (n—3)mi); cschz = — z # nmi);
cosh z (2 # (1 = ), sinh z ( )

forn=0, 1, £2, ....
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Some useful identities include

sinh(z £ w) = sinh z coshw =+ cosh zsinh w,
cosh(z + w) = cosh z cosh w % sinh z sinh w,

and, for z = x + iy,

sinh z = cosysinh x + i siny cosh x,

cosh z = cosy cosh x + isin ysinh x.

An example of a multiple-valued complex function is the inverse
of the exponential function, namely the logarithm function

logz =log|z| +iarg(z) + 2nmi, n=0,=£1,%2,..., 0 < arg(z) < 27w

which maps for each value of n the complex plane minus the origin
onto the horizontal strips as in Figure 3.3 with the roles of the z- and
w-planes reversed.

We call

w = Logz = log |z| + i arg(2), 0 < arg(z) < 2w,
the principal logarithm. By removing the nonnegative real axis (a
branch cut) from the domain, Log z, as well as each of the branches,
logz = log |z| 4+ i arg(z) + 2nmi, n=0,%£1,+£2,...,

for each fixed n, becomes single-valued and analytic.
Another multiple-valued function is

0+2kn

1 1 .
w=zn =g ), k=0,1,...,n—1,

which has n branches (one for each value of k) that are single-valued
analytic for 0 < 0 < 2w, r > 0, having again removed the non-

negative real axis. In particular, when n = 2, w = /z has two
branches:
wy = rie??:
’
1
Wy = 7”261(0/2)+ﬂ = —Uw.

We can even take a branch cut removing the nonpositive real axis so

that w; and w; are (single-valued) analyticon —7 < 6 < &, v > 0.
For the preceding multiple-valued functions, after one complete

circuit of the origin in the z-plane, we find that the value of w shifts to
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another branch. Because of this property, z = 0 is termed a branch
point. The branch point can be a point other than the origin; the
function w = +/z — 1 has a branch point at z = 1.

Analytic Functions. The notions of limit and continuity are es-
sentially the same for complex functions as for real functions. The
only difference is that whenever z — z, in a limit, the value of the
limit should be independent of the direction of approach of z to z.
Regarding the derivative, we say that a complex function f(z) de-
fined on a domain (connected open set) D is differentiable at a point
7y € D if the limit

a —
d—}; (20) = f'(20) = lim e ];EZOJ

exists.

If f(2) is differentiable at all points of some neighborhood |z —
Zo| < 7, then f(2) is said to be analytic (holomorphic) at zy. If f(z) is
analytic at each point of a domain D, then f(z2) is analytic in D. Since
analytic functions are differentiable, they are continuous.

Differentiation of sums, products, and quotients of complex func-
tions follow the same rules as for real functions. Moreover, there are
the familiar formulas from real variables,

d n n—1

—z =nz

dz

d Z Z

A
dL ! (0 27)
— Logz = — < arg(z) < 2w
7, o8z =~ g(2) :

and so forth.

Cauchy-Riemann Equations. For an analytic function f(z) =
u(x,y) + iv(x, y), the real and imaginary parts u and v cannot be
arbitrary functions but must satisfy a special relationship known as
the Cauchy-Riemann equations:

Uy = Vy; Uy = —Uy. 3.1)
These arise from the fact that

f(20) = ux(20) + ix(20), 3.2)
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letting z — zg along a line parallel to the real axis in computing the
derivative, and

f'(20) = vy(20) — i1ty (20), (3-3)

letting z — z, along a line parallel to the imaginary axis. Equating
the real and imaginary parts of (3.2) and (3.3) gives (3.1).

One consequence of (3.1) is that a nonconstant analytic function
f = u+iv cannot have v = 0 (that is, f is a real-valued function),
for the Cauchy-Riemann equations would imply u = constant, a
contradiction.

Equally important is the partial converse:

If f(2) = u(x, y) + iv(x,y) is defined in a domain D and the partial
derivatives uy, Uy, Uy, Uy are continuous and satisfy the Cauchy-Riemann
equations, then f(z) is analytic in D.

Let us make use of this result to show that the Laplace transform
is an analytic function.

Theorem 3.1. Let f(t) be piecewise continuous on [0,00) and of
exponential order a. Then

F(s)=L(f(1)
is an analytic function in the domain Re(s) > a.

ProoF. Fors = x4 1y,

F(s) = /0 b e Vf()dt = /O h e~ UV () dt
= /OO e M (cosyt —isinyt)f(t)dt
0

= /oo(e’“ cosyt) f(t)dt +1i fm(—eXt sinyt) f(t)dt
0 0
=uxy) + i y).

Now consider

* 9 —xt o
/t 5(6 cosyt)f(t)dt‘ =

0

foo(—te_’“ cosyt) f(t)dt

<[ e dr
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o
<M / e"edigr (8 > 0)
to

M
<—¢
X—oa—3§

—(x—a—08)ty
where § > 0 can be chosen arbitrarily small. Then for x > x; >
a (and hence x > x; > o + §), the right-hand side can be made
arbitrarily small by taking t, sufficiently large, implying that the
integral f0°°(a/ ox) (e~ cos yt) f(t) dt converges uniformly in Re(s) >
Xg > .

Likewise, the integral [;~(3/0y)(—e ' sinyt)f(t)dt converges
uniformly in Re(s) > % > a.

Because of this uniform convergence, and the absolute conver-
gence of L(f), by Theorem A.12 we can differentiate under the
integral sign, that is to say,

9
Uy = /o 5(6_’“ cosyt) f(t)dt

= /w(—te_’“ cosyt) f(t)dt,
0
9
vy =/O @(—G_Xt sinyt) f(t)dt

= /Oo(—t e cosyt) (1) dt,
0

and so u, = v,. In a similar fashion the reader is invited to show that
uy, = —vx. The continuity of these partial derivatives follows from
Theorem A.2 applied to the function g(t) = —tf(t) and taking the
real and imaginary parts.

Thus, the Cauchy-Riemann conditions are satisfied and F(s) =
u(x,y) + iv(x,y) is an analytic function in the domain Re(s) > «,
since any such point s will lie to the right of a vertical line at some
Xo > . O

Remark 3.2. In general, if f € L, then F(s) is analytic in some
half-plane, Re(s) > x, (cf. Doetsch [2], Theorem 6.1).

In view of the foregoing discussion, let us verify the following
formula proved in Chapter 1 for a real parameter s (Theorem 1.34).
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Theorem 3.3. If f is piecewise continuous on [0, 00) of order o and
has Laplace transform F(s), then

n

%F(S) =L((-D""f(), n=1,23,... (Re(s) > a).

PrOOF. Writing F(s) = u(x,y) + iv(x,y), where u,v are as in the
preceding theorem, we have by (3.2)

F'(8) = uy + vy

= / OO(—t e cosyt)f(H)dt +1 / oo(t e M sinyt) f(H)dt
0 0

= foo —t(e ™ cosyt —ie M sinyt) f()dt
0

= /oo —te Sf()dt
0

=L(—tf(D).
Repeated application of this procedure gives the formula. O

The real and imaginary parts of an analytic function f = u+iv not
only satisfy the Cauchy-Riemann equations, but taking the second
partial derivatives [which we can do since f(z) has derivatives of all
orders; see formula (3.7)], we find that

AU = Uy, + Uyy = 0, (3.4)

and likewise for v. Since the second partial derivatives are also con-
tinuous, both u and v are harmonic functions, satisfying the Laplace
equation (3.4), and A is the Laplace operator. Here v is called the
harmonic conjugate of u and vice versa.

Exercises 3.2

1. Show that

(a) &€ =1ifand only ifz = 2nmi, n =0, £1, £2, ...
(b) ¢ =—1lifandonlyifz=C2n+1)mi, n =0,%1,£2,....
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. Compute

(a) Log(—1) (b) Log(—¢0)

(c) Log( +§)

. We define the principal value of z* by

S — gulogz _ 6w(10g|z\+iarg(z)).

Find the principal value of
i 1
(@) (@ (b) (=1~

(c) (1 + )+,

. Show that

(a) d_ cosz = —sinz
A
a

(b) 7 coshz = sinhz
z

d 2
(©) rm tanhz = sech”z (z # (n — 3)mi).

. Show that

(a) sinh(z £ w) = sinh z cosh w =+ cosh zsinh w
(b) cosh(z £ w) = cosh z coshw =+ sinh z sinh w.

. Show that for z = x 4+ iy

(a) sinhz = cosysinhx 4 isinycoshx
(b) coshz = cosycoshx +isinysinhx.
. Prove that the functions f(z) = z and g(z) = |z| are nowhere

analytic.
. (a) Show that the function

ulx, y) = X — 3xy2 + xy

is harmonic in C.
(b) Show that the function

v
v(x, y) =3’y — ——+3
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is harmonic in C and that f = u 4+ iv is analytic in C,
where u is given in part (a).
9. If f(2) is analytic, show that

If( )E toa If(Z)l =4lf'(2)”.

10. Show that if f = u +iv is an analytic function and v = constant,
then f = constant.

3.3 Integration

Integrals of complex-valued functions are calculated over certain
types of curves in the complex plane. A parametric representation
of a continuous curve C:z(t) = x(t) + iy(¥), « <t < B, is smooth if
Z'(t) is continuous fora <t < Band z'(t) # 0 fora < t < B.

A contour C is just a continuous curve that is piecewise smooth,
that is, there is a subdivisiono =ty < t; < --- < t, = fand z = z(¥)
is smooth on each subinterval [ti—1, t], k = 1,---,n. The point z(a)
is the initial point, z(B) is the terminal point, and, it z(a) = z(B), C is
closed. (See Figure 3.4.) If C does not cross itself, it is called sim-
ple. Simple, closed contours (see Figure 3.5) enjoy both properties
and form an important class of curves. The positive direction along a
simple, closed contour C keeps the interior of C to the left, that is,
the curve is traversed counterclockwise. If co is an interior point,
however, the positive direction is clockwise, with co on the left.

ﬂ of e |

FIGURE 3.4
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C'(simple, closed)

AR
7

The reason for being so particular about the choice of curves
is that for a continuous, complex-valued function f(z) defined on a
contour C, the (Riemann) integral of f(z) over C can be defined as
B
f f(z)dz = / f(z(0)Z'(t)dt (3.5)
Cc a

since the right-hand integral exists. This is so because the integrand
is piecewise continuous. In view of (3.5), many of the standard
rules for integration carry over to the complex setting. One rule
in particular is worth singling out:

- fc r@i= [ @4,

where —C represents the contour C traversed in the opposite
direction to that of C.
Furthermore, if Cy, Cy, ..., C, are disjoint contours, we define

dz = d d - az.
/C1+C2+“-+Cn f(Z) ? \/;1 f(Z) ot ‘/;2 f(Z) °r N /(;“ f(Z) :

If f(2) is continuous on contour C, then we can write

/Cf(z) dz

FIGURE 3.5

B
< [ Few) ol

8
/ f(z(t) 2/t at

_ f F(2)] 1dz],
C

/C izl = / 1= f Jor ora

where
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FIGURE 3.6

= length of C = L.

Thus, if |[f(z)] < M on C,

‘/Cf(z)dz

This type of estimate will be useful in the sequel.

< /C F(2)] ldz] < M Le.

Example 3.4. Let C:z = a+7re", 0 <t < 2 (Figure 3.6). Then

dz = ire'dt and
dz gy etdt ,
= — = 2mi.
czZ—a 0 ret

Note that the function being integrated, f(z) = 1/(z — a), is analytic
in C — {a}, but not at the point z = a.

In what follows, it is advantageous to consider our underlying do-
main in which we shall be integrating over closed contours, to “not
contain any holes,” unlike in the preceding example. To be more
precise, we say that a domain D is simply connected if for any two
continuous curves in D having the same initial and terminal points,
either curve can be deformed in a continuous manner into the other
while remaining entirely in D. The notion of a continuous deforma-
tion of one curve into another can be made mathematically precise,
but that need not concern us here (cf. Ahlfors [1]).
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Ci

C C
3 4 Oy

hole

FIGURE 3.7

For example, the complex plane C is simply connected, as is
any disk, and so is the domain C — {nonnegative real axis}. On the
other hand, C — {a} is not simply connected, nor is the annulus
A ={z:1 < |z| < 2}, nor the domain D in Figure 3.7.

This brings us to the cornerstone of complex variable theory:

Cauchy’s Theorem. Let f(z) be analyticin a simply connected domain
D. Then for any closed contour C in D,

/Cf(z) dz = 0.

One important consequence is that for any two points z1,z; € D
(simply connected) and f(z) analytic,

/Z f(2)dz

does not depend on the contour path of integration from z; to z,
since the integral from z; to z, over contour C;, followed by the
integral from z, to z; over another contour C,, gives by Cauchy’s
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22
Ch

Cs

21

0] z  FIGURE 3.8

theorem

f f(z2)dz=10
C1+C;

(Figure 3.8). Consequently,

| r@e= | s
o -G,

and we say that the integral of f(z) is independent of path.
This means that the integral

/Z f(2)dz

can be evaluated in the manner of a real integral, that is, the integral
has the value g(z;) — g(z1), where g(z) is any antiderivative of f(z),
namely, g'(z) = f(2).

Example 3.5. The integral
/in dz
—ix &
can be computed by taking any contour C lying in the left half-plane
that connects the points —im and in (Figure 3.9). Therefore,

i dz
/ — = Logz

—ir 4

in

= Log(im) — Log(—1m)

= log |in| +iarg(in) — log | — in| — i arg(—im)

= —im.
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i

b — 47T

FIGURE 3.9

Cauchy Integral Formula. Let f(z) be analytic within and on a
simple, closed contour C. If zq is any point interior to C, then
1 f(2)dz

fen =5 | 22

, 3.6
2mi Jo z — 29 (3.6)

taking the integration along C in the positive direction.

The hypothesis means that f(z) is analytic on a slightly larger
region containing C and its interior.
Furthermore, the nth derivative of f(z) at z = z, is given by

£ (z20) = RS / _f@dz n=012... (3.7

27t Jo (2 — 2ottt

For n = 0 we have the Cauchy integral formula.

/ edz
CZ2+1’

where C : |z| = 2 is taken in the positive direction.
Taking a partial fraction decomposition and the Cauchy integral
formula, we find

Example 3.6. Evaluate

e’ 1 e’ 1 e’
/ > dz = — -dz — — - dz
cz®+1 21 Joz—1 21 Joz+1
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1., 1
= —2mie — — 2mie
21 21
= 7T(6i - 671.).
If f(2) is analytic within and on a circle C : |z — zy] = R, and

M = maxy; =z If (2)|, then from (3.7) we have forn =0,1,2,...

|f(n)(Z)| <£/M<ﬂ.£.zn}g
V= on clz —zp|" T 2 R
Mn!

Rn
The condition |f("M(zy)| < Mn!/R" is known as Cauchy’s inequality.
If M bounds all values of |f(2)|, z € C, namely f(z) is bounded,
as well as analytic in C, then letting R — oo in Cauchy’s inequality
withn =1 gives f'(z9) = 0. Since in this case zy is arbitrary, f'(z) = 0
for all z € C, implying f = constant in C by the Cauchy-Riemann
equations. We have established the following result.

Liouville’s Theorem. Any bounded analytic function in C is
constant.

As an application, suppose that f(z) = u(z) + iv(2) is analytic in
C with u(z) > 0, z € C. Then the analytic function

F(z)=¢7®

satisfies |F(z)| = ¢ *® < 1 in C, and Liouville’s theorem implies
F(z) = constant. Whence f(z) = constant.

Exercises 3.3

1. Compute the value of the following integrals over the given
contour C traversed in the positive direction:

/dz Cilz—1|=3
@ [T o=

(b) /;Edz, C:lz|=1
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0] 1 =z
FIGURE E.8

z, C:lz+1i =1

(e) / dz, C is the perimeter of the square with vertices at

z—1+zz_—1+1 z=—1—1,z=1—1

(f)f a1 C:lz| =2

h 2
A GLLERE DU
Z(z +1)
2 3 1
(h)[ 24327+ dz, C:|z| = 4.
— mi)3

2. Compute the value of the following integrals:
in/2 d i
(@) = M) | zedz.

—in/2 4 in/2

3. Let C be the arc of the circle from z = R to z = —R that lies in
the upper half-plane. Without evaluating the integral, show that

elVl’lZ nR
/czz—i-azdz‘SRz—aZ (m > 0).

4. (a) Using the Cauchy integral formula, show that

—b f(2)
fl@)=f(b) = 27l /|Z|_R (z—a)(z—D)

for f(z) analyticin C, |a|] < R, |b|] < R.
(b) Use the result of part (a) to give another proof of Liouville’s
theorem.

)
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5. Let f(2) be analytic in the disk |z| < 3 and suppose that |f(2)| < 5
for all values of z on the circle |z — 1| = 2. Find an upper bound
for [F(0)].

6. Suppose that f(2) is analytic in C and satisfies

1
f@lz4,  2¢€C.

Prove that f(z) = constant.
7. Suppose that f(z) is analytic in C and satisfies

f@l <le’l, ze C.

Show that f(z) = ce” for some constant c.

3.4 Power Series

A power series is an infinite series of the form

o0
Zan(z —20)" = ap +a1(z — 20) + ax(z — 20)* + -+, (3.8)
n=0
where z is a complex variable and zy, ag, a;, ... are fixed complex
numbers.

Every power series (3.8) has a radius of convergence R, with
0 < R < 00.IfR = 0, then the series converges only for z = z,. When
0 < R < o0, the series converges absolutely for [z — zg| < R and
uniformly for |z — zg| < Ry < R. The series diverges for |z — zy| > R.
When R = oo, the series converges for all z € C. The value of R is
given by

1

R= ———
hm Vn |an|
n—oo
or by
. a
R = lim I
00 | dn41

whenever this limit exists.
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Example 3.7.

=1.

o0
a nz" R = lim
( ) ; n—oon—+ 1

n! n—00 n!

YD ke nm D
n=0

im — =0
n—oo (1 + 1)!

00 nl
(© Y nz"  R=1 :
n=0

The circle |z — zg] = R, when 0 < R < 09, is called the circle of
convergence.

Two power series,

f@)=) anz—2)", 8@ =) bu(z—2)"
n=0 n=0

that converge in a common disk [z—zy| < R canbe added, subtracted,
multiplied, and divided according to these rules:

e f(2)£g(2) = Z(an £ Dby)(z — 20)", |z — 2o| < R;
n=0

o0

o f(2)g(2) =Y oz —20)",  lz—2l <R,
n=0

where

n
cn=2akbn_k, n=012...;
k=0

° ;E—Zzgcn(z—zo)n, |z — 20| < ¥ <R,

for g(z) # 0 in |z — zy| < r, and ¢, satisfies the recursive relation

an — Coby — C1bp—1 — -+ — Cp1 by

Cp = > (g(20) = bo # 0).
0

A most significant feature of power series is that:

A power series represents an analytic function inside its circle of
convergence.
Moreover, the converse is true:
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If f(2) is analytic in a disk |z — zy| < R, then f(2) has the Taylor
series representation

oo ()
fer =Y B o gy 3.9

n=0

at each point z in the disk.
The coefficients

f(n)(Zo)

n!

=
are known as Taylor coefficients.
For example, the function f(z) = cosh z has the representation

oo 2n

coshz = Z (;n)! (20 = 0),

n=0

where a, = fUV(0)/n! = 1/n! (n even), a, = 0 (n odd).

Suppose that f(z) is not analytic in a complete disk but only in an
annular region A bounded by two concentric circles C; : |z—2zg| = Ry
and C; : |z — 29| = Rz, 0 < Ry < R; (Figure 3.10). We will assume
that f(z) is analytic on C; and C; as well, hence on a slightly larger

G,

FIGURE 3.10
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region. Then for each z € A, we have the Laurent series representa-
tion

f(z)= Zan(Z—Zo) +Z )n’ (3.10)
where
1 f(§)dg
n_Z_m'/CZm’ n=2012,..., (3.11)
1 f(§)dg
_Z_”ifclm’ n=1223,..., (3.12)

and integration over C; and C; is in the positive direction.

This representation is a generalization of the Taylor series, for
if f(2) were analytic within and on C,, then all the b,s are zero by
Cauchy’s theorem since the integrands are analytic within and on
C;. Furthermore,

f(20)

a, = , n=20,1,2...
n!

by (3.7).

Example 3.8. Let us determine the Laurent series representation
of the function

1
fO= e+

in the annulus 1 < |z]| < 2.
First, by partial fractions we have

1 1 1
(z—1)z+2) 3(z-1) 3(z+2)
Since the geometric series

iﬂ”=1+ﬂ+ﬂ2+-~-

n=0

converges for |B| < 1 to the value 1/(1 — B), and as we have in fact,
|1/z| < 1 and |z/2] < 1, it follows that




14(0 3. Complex Variable Theory

1 1 1 2"
z+2 2(1+42) ZZ(_)Z_”'

n=0
Hence

VlVl

—— =Tt - = ) < |z|] < 2.
(z—D(z+2) 3&z 34 ”+1

This is the form of a Laurent series representation, and since the
Laurent expansion is unique, we are done.

Singularities. A singularity (singular point) z, of a function f(z) is
a point at which f(z) is not analytic, but any open disk about z,
|z — 2zo| < R, contains some point at which f(z) is analytic. We say
that z, is an isolated singularity (isolated singular point) if f(z) is not
analytic at zg but is analytic in a punctured disk, 0 < |z — zg] < R,
of zg.

For example,

1
-1z +2)

has isolated singularities at z = 1, z = —2. On the other hand,

fz) =

I

has isolated singularities at z, = 1/nw, n = 1, £2, .... The origin is
also a singularity of g(z) but not an isolated one since no punctured
disk about z = 0 is free of singular points.

In this text we are concerned only with isolated singularities, of
which there are three types.

If z, is an isolated singularity of f(z), then we have the Laurent
series representation (3.10)

o0

f(Z)—Z(Z ) Zan(Z—zo) (3.13)

n=1

valid in some punctured disk 0 < |z — zy| < R.

(i) If b, = 0 for all n, then for z # 2, (3.13) becomes

f(2)=) an(z—2z)".
n=0
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(i)

(iii)

Setting f(zo) = ap makes f(z) analytic at zj, and z, is termed
a removable singularity.
For example, the function

f(z) =sinz/z = i (—1)'z*/2n+1)! (z#0)
n=0

has a removable singularity at z = 0 if we set f(0) = 1.
If all but finitely many b,s are zero, say b, =0 for all
n >m>1and b, # 0, then

by b, D

z—20 (2—20)* (z — Zo)™

— + Z an(z — 20)".

(3.14)
In this case, we say that zy is a pole of order m of f(2). If m =1,
then z, is a simple pole of f(z).
As an illustration,

fa) =

e 1 1
f@)=S=S+ 5+ tat (2d>0
Z Z Z Z .
has apole of order 3 at z = 0. From the Laurent representation
(3.13), it is readily deduced that
f(2) has a pole of order m at z, if and only if
h(z)

f(@zm,

where h(z) is analytic at zy, h(zo) # 0.

Thus, the function

1
241 (z—i)z41)

f(2) =

is seen to have simple poles at z = =i.

A function that is analytic except for having poles is called
meromorphic.

If an infinite number of b,s are not zero in (3.13), then z, is
an essential singularity of f(z).
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The function
1 1
Z) = 62 =1 - N
(&)= + +2'2+3.Z+ +n!z”

has an essential singularity at z = 0.

o (lz] > 0)

Residues. For a function f(z) with an isolated singularity at z, and
Laurent series representation

o0

by,
f@=2 = Z)W+Zan(z—z@

n=1

in0 < |z —2z| < R, the coefficient by, according to (3.12), is given

1[
! 27'[16()

for C : |z — zg]| = r < R. This coefficient is very special because
of its integral representation and is termed the residue of f(z) at zy,
abbreviated by Res(z2y).

In the event f(2) has a pole of order m at zy, the algorithm

m—1

Res(zo) = by = T lim ——— [(2 = 20)"f(2)] (3.15)

permits the easy determination of the residue. When z; is a simple
pole (i.e., m = 1), we have

Res(zp) = lim(z — zp) f(2). (3.16)
Z—> 2
This latter case can often be treated as follows. Suppose that
p(2)
f@) ===,
q(2)

where p(z) and q(z) are analytic at zy, p(zo) # 0, and g(z) has a
simple zero at zy, whence f(z) has a simple pole at zy. Then g(z) =
(z —20) Q(2), Q(20) # 0, and q'(20) = Q(20), implying

pE) _ . p@)

O Y CO=ED

zZ—2Zy

Res(zp) = hm (z — zo)

_ p(20)

. 3.17
(@) (17
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On the other hand, if g(zo) = 0 and ¢'(zo) # 0, then
6]”( Z0)

a(z) = q'(20)(z — z0) +

= (2 —20) Q(2),

where Q(zo) = ¢q'(z0) # 0. That is, we have shown that z, is a simple
zero of q(z), hence a simple pole of f(2).

(z—z20)" + -

Example 3.9. The function

e(zz)

=5
has a pole of order 3 at z = i. Therefore,
1 dz d?
Res(i) = — lim ——[(z = ’f(2)] = 5 hg; e

1
= 1im[2226(22) + e(zz)] ==,

z—>1 €
Example 3.10. For

66{2 2 eaZ p(Z)

f@)=——= -

sinhz e —e? q(2)

the poles of f(z) are the zeros of sinh z, that is, where ¢ = ¢7%, and

so € =1, implying z = z, = nni, n = 0, £1, £2, .. .. Since p(z,) # 0
and
q/(Zn) — enni + e—nm' — (_1)n ) ?é 0'
the poles z, of f(z) are simple. Thus,
p(2n)
q'(2n)

The reason for computing residues is the following:

Res(z,) = = (—=1)"e"™, n=0,=+1,+2,....

Cauchy Residue Theorem. Let f(z) be analytic within and on a
simple, closed contour C except at finitely many points z1, z,, . . . , Z lying
in the interior of C (Figure 3.11). Then

/ f(2)dz = 2mi Xn: Res(z),
¢ i=1

where the integral is taken in the positive direction.
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FIGURE 3.11

Example 3.11. Evaluate

eaz
/ dz
c coshz
for C : |z| = 2 in the positive direction.

Write

az

_r@

&)= oz = a

Then coshz = (€7 + ¢7?)/2 = 0 when & = —¢ 7 (i.e., €% = —1), so
that

z:znz(n—%)m', n=0,%£1,=£2,....
Now, p(z,) # 0 with

(n—1ymi —(n—Hymi
e 2 e 2
2 = ()" #£0,

so that all the poles z, of f(z) are simple. Furthermore, only z; =
(m/2)i and zy = (—n/2)i lie interior to C. Hence,

q'(zn) =

big

a;i
ReS(Zl) = @ = e—_,
q'(z1) l
Res(z0) = 10/(20) _en
q'(20) —1

Therefore,

e . s
dz = 2 [6“51 — e_“fl]
c coshz

.. am
= 4mi sin (—) .
2
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Exercises 3.4

1. Determine the radius of convergence of the following series:

( 1))’1 o o0 3n n

(a); n2+ 1 (b)z(Zn—l-l)'

Z n(z —1i)" d i (—1)'z"
(c )n:1 1 ( )W:0 oy

2. Compute the Taylor series about zy, = 0 for the following

functions and determine the radius of convergence:
(a) e (b) sinh z
(©) 1 (d) log(1 + 2).

3. Let f(z) be analytic in C with Taylor series

f(2) = Z anz".
If |f(z)] < M(7) on |z| = r, show that
M(r
|an|§ _(), n=01,2....
n
(Note: This is another version of Cauchy’s inequality.)
4. Determine the nature of the singularities of the following

functions:

1 e(zz)
@ o () =
1 14 cosmz
(¢) sin ) ———

5. Write down the first three terms of the (Taylor/Laurent) series
representation for each function:

) —

sinz zsinh z

@
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sinh f
(©) Zcosh /2 JVzcosh/z
6. Find the Laurent series expansion (in powers of z) of
1
f(z) = 2+ )z=3)
in the, regions:
(a)0< |zl <1 M) 1<|z] <3

(c) Iz| > 3.

7. Find all the poles of the following functions and compute their
residues:

@) ) ——

z2 4+ az z(1 + e*)

sinz

()

8. Evaluate the following integrals over the contour C taken in the
positive direction:

1—¢€7
(a) /—dz C:lzl=1

COS Z
dz, C:|z|=2
ON T

cotzdz, C:|z|=4

(<)

C1+ez
d d C: =1
()/Cl_ez z C:ll

daz . _ 5
(©) /CZZ(z+2)(z—1)’ Hlal =3

9. Evaluate the integral

einz
/2—, C:lz| =2
c 2z —5z—3

(taken in the positive direction) by using the

(i) Cauchy integral formula
(ii) method of residues.
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3.5 Integrals of the Type /% f(x)dx

Much of the complex variable theory presented thus far has been to
enable us to evaluate real integrals of the form

o
/ f(x) dx.
—00
To this end, we transform the problem to a contour integral of
the form
[ s
I'r

where I'k is the contour consisting of the segment [—R, R] of the real
axis together with the semicircle Cx : z = Re?, 0 <6 < m (Figure
3.12).

Suppose that f(z) is analytic in the complex place C except at
finitely many poles, and designate by z, zy, . . ., 2, the poles of f(2)
lying in the upper half-plane. By choosing R sufficiently large, z,
Zy, ..., 2z, will all lie in the interior of I'r. Then by the Cauchy residue
theorem,

27l ; Res(z) = /FR f(2)dz

R
= f(x)dx-i—/ f(2)dz.
—R Cr
If we can demonstrate that

lim / f(2)dz =0,
Cr

R—00

z = Re®?

R

022

R r FIGURE 3.12
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then we can deduce that the solution to our problem is given by
o] R n
/ f(x)dx = lim / f(x)dx = 2mi Y Res(z). (3.18)
o R—o0 J_p —

Example 3.12. Evaluate

/OO dx b>a>0
—o (X2 F a?)(x2 4+ b?)’ '

Let

O = T

and consider

tLK@M

where I'y is the contour in Figure 3.12. For R sufficiently large, the
simple poles of f(z) at the points ai and bi will be interior to I'k.
Then by (3.16)

Res(ai) = lim , - 41
z—ai (z — ai)(z + ai)(z? + b?)
_ 1
 (2ai)(b* — a?)’

z — bi
Res(bi) = 1
S = T )z — b + 1)

1
~ (a — b»)(2b)’
and

2mi(Res(ai) + Res(bi)) = D@t D)

Moreover, on Cg, z = Re?, |dz| = |iR €df| = Rd, with |z?+a?| >
|z|* — |al* = R* — a?, |z* + b*| > R* — b?, and so

</ dz|
RRAEENEIEE

dz
/CR (2% 4+ a?)(z% + b?)
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- /” RdH

=)o ®—ay® =
R 0

R — @R —DP)

as R — 0.
Consequently, by the Cauchy residue theorem,

T (" dx dz
ab(a+b) /_R (X% + a?)(x% + b?) * fc (2% + a®)(z% + b?)’

and letting R — o0,

o0 dx B T
/_oo (x2 +a?)(x2 +Db?)  ab(a+Db)’

This example illustrates all the salient details, which will be
exploited further in the next chapter.

Exercises 3.5

Use the methods of this section to verify the following integrals.

1 /oo dx 27
X2 H+x+1 /3

) /OO dx _n\/g
“Jo A+ +1 6
3 f‘” Cdv 72
o 14X 4

/‘OQ dx 5w
4, = —.
o (P+1)(2+4)7? 288

* cosx me™ ¢
. ﬁ dX = .
0o X*t+a 2a

[Hint: For this type of problem, consider the function

8)]
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and observe that on the x-axis

Ref(z) = Re( e ) CoS X

x* +a? x2 4 a?

Now proceed as before.]

50 .

X sinmx T o_

G.f ﬁd)c:—e am’ a > 0.
0 x“+a 2

[Hint: Consider the function

imz

¢ ze
Z)= ———
( ) Zz + azr
so that on the x-axis,
X sin mx
x24+a?’
Also, you will need the inequality siné > 26/m, for 0 <6 < /2]
© Ay %
7. = — , n>=>72
o X+1  sin(Z)
[Hint: Consider [_ (dz/(z" + 1)) where C is the contour in Figure
E.9]

Iimf(z) =

Re‘ZTri/n

0 R x FIGURE E.9
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Inversion
CHAPTER Formula

The complex inversion formula is a very powerful technique for
computing the inverse of a Laplace transform, f(t) = L™ (F(s)). The
technique is based on the methods of contour integration discussed
in Chapter 3 and requires that we consider our parameter s to be a
complex variable.

For a continuous function f possessing a Laplace transform, let us
extend f to (—oo, 00) by taking f(t) = 0 fort < 0. Then for s = x+1y,

L(f(t) =F(s) = /0 e Sf(tdt

_ /oo e_iyt(e—xff(t)) At

o]

=F(x,y).

In this form F(x, y) represents the Fourier transform of the func-
tion g(t) = e ™f(t). The Fourier transform is one of the most useful
tools in mathematical analysis; its principal virtue is that it is readily
inverted.

Towards this end, we assume that f is continuous on [0, 00), f(t) =
0 fort < 0, f has exponential order «, and f” is piecewise continuous
on [0, 00). Then by Theorem 1.11, E(f(t)) converges absolutely for

151



152 4. Complex Inversion Formula

Re(s) = x > a, that is,

/OO le™S'f(t)| dt = /OO e M|f ()] dt < oo, X > a. (4.1)
0

—0o0
This condition means that g(t) = e ™f(t) is absolutely integrable, and

we may thus invoke the Fourier inversion theorem (Theorem A.14),
which asserts that g(t) is given by the integral

1 .
g(t) = —/ eV F(x,y)dy, t>0.
2w J_

o0

This leads to the representation for f,

o0

1 .
f(t)= . / "¢V F(x,y)dy, t>0. (4.2)
—0oQ0

Transforming (4.2) back to the variable s = x + iy, since x > « is
fixed, we have dy = (1/7)ds and so f is given by
t Lo “F(s)ds = lim — o “F(s)d 4.3
f) = o fx_m FPOds=lim oo | P 43)
Here the integration is to be performed along a vertical line atx > «
(Figure 4.1). The expression (4.3) is known as the complex (or
Fourier-Mellin) inversion formula, and the vertical line at x is known
as the Bromwich line. In order to calculate the integral in (4.3) and
so determine the inverse of the Laplace transform F(s), we employ
the standard methods of contour integration discussed in Chapter 3.
To wit, take a semicircle Cgr of radius R and center at the origin.
Then for s on the Bromwich contour I'r = ABCDEA of Figure 4.2,

1 ) 1 1
— | EPF(s)ds = — eBF(s ds—l——/ eSF(s)ds. 4.4
omi Jp T =g | e F@d T )0 T® (4.4)

FIGURE 4.1
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C
YR \ Az + iy)

/ E(z —iy)

FIGURE 4.2

Since F(s) is analytic for Re(s) = x > «, all the singularities of F(s),
such as they are, must lie to the left of the Bromwich line. For a pre-
liminary investigation, let us assume that F(s) is analyticin Re(s) < «
except for having finitely many poles zi, z,, . . ., 2, there. This is typical
of the situation when, say

_ PO

Q(s)’
where P(s) and Q(s) are polynomials.

By taking R sufficiently large, we can guarantee that all the
poles of F(s) lie inside the contour I'k. Then by the Cauchy residue
theorem,

F(s)

1 s n
— | €°F(s)ds = Res(zx), (4.5)
271 Jry, ;
where Res(zy) is the residue of the function e*F(s) at the pole s = z.
Note that multiplying F(s) by €* does not in any way affect the status
of the poles zx of F(s) since ¢ # 0. Therefore, by (4.4) and (4.5),

I 1 (MY 1
Z Res(zx) = — / ¢“F(s)ds + — f ¢“F(s)ds. (4.6)
— p 211 J e,

27 —iy
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In what follows, we prove that when

lim | €®F(s)ds =0,

R—00 Cr
and then by letting R — oo in (4.6), we obtain our desired
conclusion:

x+i n
f() = lim L ¢"F(s)ds = ) _ Res(z). (4.7)
k=1

y=00 271 Jy_yy

This formula permits the easy determination of the inverse function
f. Let us then attend to the contour integral estimation.

Jo, €°F(s)ds — T as R — oo0. An examination of the table of
Laplace transforms (pp. 210-218) shows that most satisfy the growth
restriction
Pl < — (4.8)
for all sufficiently large values of |s|, and some p > 0.
For example, consider

F(s) = 2 j 2= L (cosh at).

Then
Is| N

< ,
—a*| = |s]* = |al?

Fs)| < 1

and for |s| > 2|a|, we have |a|?> < |s|?/4, so that [s|? — |a|?> > 3]|s|?/4,
giving
4/3
IF(s)l = o (Isl = 2lal).

Observe that under the condition (4.8), F(s) — 0 as [s| — oo.

Consider again the contour I'g as given in Figure 4.2. Any point
s on the semicircle Cg is given by s = Re? 6, < 6 < 6,. Thus,
ds = iR €d6 and |ds| = Rd6.

Lemma 4.1. For s on Cg, suppose that F(s) satisfies

M
[F(s)| < —, some p > 0, all R > Ry.
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Then

lim | e*F(s)ds=0  (t > 0).

R—00 o
ProOOF. For points s = Re on Cg, |e¥| = eR?. Therefore, for R
sufficiently large so that all the poles of F(s) are interior to I'g, F(s)
will be continuous on Cg with |F(s)| < M/R? for all large R. Hence
on the circular arc BCD,

/ ¢"F(s)ds 5/ 1€ |F(s)] |ds|
BCD BCD
M %ﬂ Rt cos @
< oy | erae. (4.9)

2

At this stage substitute 6 = ¢ + (7/2), which results in

M T .
/ GStF(S) ds < / e—Rtsm(pd(p
BCD Rr=1 Jy
2M % —Rtsing
= e dy, (4.10)
Rr—1 [,y

the latter equality being a consequence of sin ¢'s being symmetric
about ¢ = /2, for 0 < ¢ < m.

In order to obtain a bound for the last integral, consider the graph
ofy =sing, 0 < ¢ < n/2 (Figure 4.3). The line from the origin to the
point (7/2, 1) has slope m = 2/7 < 1, and thus the line y = (2/7)¢p
lies under the curve y = sin ¢, that is,

sing>2¢,  0<g<Z

(1)
y =sing

e

0 ¥  FIGURE 4.3
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Consequently, (4.10) yields

M 7
/ ¢“F(s)ds| < —— e dy
BCD RP
2M 7 [ _M]%
~ RP1 2Rt 0
RPt
-0 as R — oo.

Over the arc AB, we have |e®| < e = ¢ for fixed t > 0, and the
length of AB, £(AB), remains bounded as R — 00, so that

f S ds‘  MUAB)
AB

as R — oo. Here we have taken x to be the value through which the
Bromwich line passes, as in Figure 4.2.

Likewise,
ts
/ e'F(s)ds| — 0 as R — oo.
DE
As a consequence, we have our desired conclusion:
lim | €®F(s)ds = 0. U
R—00 Cr

Remarks 4.2.
i. We could have replaced the growth condition (4.8) with
IF(s)| < ¢,
where eg — 0as R — oo, uniformly for s on Cr. For example,
log s
F(s) = —
()=~
does satisfy this latter condition but not (4.8).
ii. If cg is any subarc of Cg, say given by n/2 < 0, <6 <0, <
3m/2, then
3

o 7
/ eRt cos Gde < / 6Rl‘ cos Gde
0 z

2
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as the integrand is positive. Since the right-hand integral fea-
tures in (4.9) and is ultimately bounded above by a quantity
that tends to zero as R — 0, we deduce that

lim | €“F(s)ds = 0.
R—0o0 cn

iii. Sometimes it is advantageous to use parabolas or other
contours instead of semicircles (see Example 4.9).

Summarizing the result claimed in (4.7):

Theorem 4.3. Suppose that f is continuous and [’ piecewise continu-
ous on [0, 00), with f of exponential order a on [0, 00). If F(s) = E(f(t)),
for Re(s) = x > «, also satisfies the growth condition

M
[F(s)| < @, p >0,

for all |s| sufficiently large and some p (or condition (i) above), and if

F(s)isanalyticin C except for finitely many poles at z1, 2y, . . ., zy, then
1 x+i00 n
flt) = — / ¢"F(s)ds = ) _ Res(z), (4.11)
270 Jy—ico P

where Res(zy) is the residue of the function e*F(s) at s = zy.

In view of the properties of the inverse Fourier transform
(Theorem A.14), we have the next result.

Corollary 4.4. If f is only piecewise continuous on [0, 00), then the
value returned by the complex inversion formula (4.11) is

e+
2

at any jump discontinuity t > 0.

Remark. The preceding theorem and corollary can be shown to
hold under less restrictive conditions on f (see Doetsch [2], Theorem
24.4), so that functions such as f(t) = 1/4/t are not excluded by the
inversion process. Essentially, the Laplace transform of f should
converge absolutely and f should be of “bounded variation” in a
neighborhood of the point ¢ > 0 in question.
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Example 4.5.

F(s) =

Cos(s—a)

Then F(s) has a simple pole at s = 0 and s = a, and |F(s)| < M/|s|*
for all |s| sufficiently large, say |F(s)| < 2/|s|* if |s| > 2|a|. Moreover,

Res(0) = lim s eF(s)
s—>

ers 1

Res(a) = lim(s — a) e“F(s)

s at

) e
=1lim — = —.
s—>a § a

Whence
1 at
f(H=—(" = ).

Of course, F(s) could have been inverted in this case using partial
fractions or a convolution.

Example 4.6.
1 1

TS @y T S aps a

Then F(s) has a simple pole at s = 0 and a pole of order 2 at s = +ai.
Clearly, |F(s)| < M/|s|® for all |s| suitably large.
s

1 ts — 14 —_—
RGS(O) == il_l;%s@ F(S) - %1_1;% (32 + aZ)Z a4 ’

Res(ai) = lim %((s — ai)’e“F(s))

s—ai

. d ( e’ )
=lim — ( —
s—ai ds \ 8(s + ai)?

; iat
. it iat e

T 4a® 2a%
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d
Res(—ai) = lim_ = ((s + ai)’e"F(s))

1

) d ( etS >
= lim —(——
s—>—ai ds \ 8(s — ai)?

—it 6—iat e—iat

4a3 2a4 "

Therefore,

. : 1 it iat —iat
Res(0) + Res(ai) + Res(—ai) = — + F(e —e ')
a a

1 . .
— 2a4 (61111‘ + 6—1at)
1 a .
=— (1 — —tsinat — cosat)
a 2

=f().
Example 4.7.

_ PO
Q)
where P(s) and Q(s) are polynomials (having no common roots) of

degree n and m, respectively, m > n, and Q(s) has simple roots at
Z1, 23, - - ., Zm- Then F(s) has a simple pole at each s = zx, and writing

F(s)

AnS" + ap_ 18"+ -+ ay
F(s) =
) D™ 4 Dy18™7L 4 - - 4+ Dy

Qp—
an+ ==+ + 3

s

1 (b 22 1)

sm

(an, Dy, #* 0)

it is enough to observe that for |s| suitably large,

ay— a
an + n1+"'+S_3‘S|an|+|an—1|+"'+|a0|:Cl;
bmfl bO |bm71 | |b0| |bm|
b — | > |b - .= - > =c
m+ o | = Bl - P
and thus
c1/¢y

IE(s)] =

- |S|mfn'
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Hence by (3.17),

¢ P(zy)
Res(zy) = ———2,
(2x) Q)

and

P(z)
f()—ZQ(Zk)

This is equivalent to the formulation given by (1.20).

Infinitely Many Poles. Suppose that F'(s) has infinitely many poles
at {zk};il all to the left of the line Re(s) = xy > 0, and that

lz1] < |za] < -+

’

where |zx| — o0 as k — o00. Choose a sequence of contours I';, =
Cn U[xo — 1yn, X0 + iyn] enclosing the first n poles z;, z, ..., 2z, as in
Figure 4.4. Then by the Cauchy residue theorem,

1 n
— | €°F(s)ds = Z Res(zx),
k=1

27t Jr,

where as before, Res(zy) is the residue of e*F(s) at the pole s = zj.
Hence

> = 5
Res(zx) = —/
= 2mi J,

0—Wn

Xo+iYn

1
e“F(s)ds + — / e“F(s)ds.
2mi Cn

Zo + Yn

)

i

To—1Yn
FIGURE 4.4
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Once again, if it can be demonstrated that

lim | €°F(s)ds =0, (4.12)

n—o0 C
n

whereby |y,| — oo, then we achieve the representation

1 Xp+i00 00
flt)y = — / ¢"F(s)ds = ) _ Res(z). (4.13)

271 Jyy—ioo k=1

Example 4.8. Find

£t _ a > 0.
s(1+es))’

F(s)

The function

= s(1 + %)
has a simple pole at s = 0. Moreover, 1 + e* = 0 gives
e® = —1 = M n=20%+1,4+2, ...,

implying that

are poles of F(s).
For G(s) = 1+ ¢€*, G'(s,) = —a # 0, which means that the poles
s, are simple. Furthermore,

1
Res(0) = lii%setsF(s) =7

tSy 1Sy

R ( ) € €
es( S = =
Cosatesy| o ase
§=S8,
gt(%)m—

Cen-1)m
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plane ’ 2nmi : (—plane
R, \
Ch :
0 E$0 x
—2nmi E
FIGURE 4.5
Consequently,
. 1 > 1 t(Zn 1)7”
sum of residues = — — Z
2 = Cn-1m
1 9 X 1 (4.14)
- _-_= Z . (Zn—l)nt
2 mie(2n-1) a

Finally, let C, be the semicircle givenby s = R, ¢, with R, = 2nn/a.
To make the subsequent reasoning simpler, let us take a = 1. Then
the circles C, cross the y-axis at the points s = +2nmi. (See Figure
4.5.) We wish to consider what happens to the points s on C,, under
the mapping H(s) = 1 + €.

(i) In the region 0 < ¥ < x; and s on C,, the image points ¢ =
H(s) = 1+¢*¢Y all lie to the right and slightly below the point
¢ = 2, for y sufficiently close to 2nzm, that is, for n sufficiently
large. (Notice that as n increases, the circles C, flatten out so
that y = Zm(s) approaches 2nr from below.) Hence

[1+¢€°|>2

for 0 < x < x.

(ii) For s on C, with Re(s) = x < 0, the values of the function
H(s) =1+ €*¢Y lie inside the circle [ — 1| = 1. As the value
of y = Im(s) goes from 2nm down to (2n — 1)z, the images
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spiral half a revolution with modulus
11+ ¢%| > 1+ "™ % cos(2nmsing) > b > 0,

for x = 2nmw cos ¢, y = 2nmsin g.

As y = Im(s) goes from (2n — 1) down to (2n — 2)m, the
images H(s) spiral away from the origin half a revolution. For
Yy < 0, it is the same story but spiraling outward.

Summarizing, the preceding shows that
HS)| =1+ |>c>0

for some ¢, for all s on C,, and likewise for |1 + ¢*°|. Consequently,

o1
|F(s)| < ItE

s on C,, n sufficiently large. It follows that

lim [ €°F(s)ds=0

n—o0 C
n

in view of Lemma 4.1. The key here is that the contours C,, should
straddle the poles.
We conclude that

- 1 1 2 & C(2n—1 ,
f(6 = (8(14—6“5))_5_;” (Zn—l) n( a )”’

as given by (4.14), at the points of continuity of f.

Remark. It should be observed that (4.14) is the Fourier series
representation of the periodic square-wave function considered in
Example 2.5. There we deduced that this function had Laplace trans-
form F(s) = 1/s(1 + €**). Note also that at the points of discontinuity,
t = na, the series (4.14) gives the value 1/2 (Figure 4.6).

Other useful inverses done in a similar fashion are (0 < x < a)

_. { sinhx./s x (— 1) B nmc
E 1 — _ n*n’t/a* 4.15
(s sinh a\/E) a Z a’ (4.15)

Ll cosh X\/E :1+£ i (_l)n e—(Zn—l)ant/4a2 coS 2n—1 "y
scosh ay/s T 2n—1 2a

(4.16)
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=

O a 2a 3a 4a t FIGURE 4.6

In the following example it is more appropriate to use parabolas
instead of semicircles for the contours.

Example 4.9.
coth/s eVs e Vs

F(s) = NG _\/E(ex/g—e—«/g).

Setting
eVs — e VS =0
leads to
Vs = 1,

implying

24/ = 2nmi, n=d=1%£2 ...,
and so

snz—nznz, n=17223,...

are simple poles of F(s) since (e¥° — e‘ﬁ)’iszs = (=1)"/nm # 0.
When n = 0, F(s) also has a simple pole at sy = 0 because
e'te s (I stg+- )+ (1 -ty —)
N RN (N S e B (A R )
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\

Pr

|
|
—(n T+ 1)27r2 272 o | To T

/

FIGURE 4.7

1+5+-
s+ +

1 1
=—-+ 3 + positive powers of s terms.
s

Let us consider the curve P, in Figure 4.7 given by that part of
the parabola

s=(+i(n+)a)’
= (2= (n+3)'7) +i2r(n+ Y7
=X+,

for x = Re(s) < xy (o > 0) and 7 a real parameter. Note that when
T =0,

2
x=—n+3) =% y=0.
The advantage in taking this particular curve is that for s on Py,

er—i-i(n—i-%)n + e—r—i(n—i—%)ﬂ

er+i(n+%)n

coth \/E - _ e—r—i(n-‘r%)ﬂ
et —e "
= ——— =tanhr.
et +e T
Hence,
| tanh 7|

|r+i(n+%)n|

[E(s)| =
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R
- (n—i—%)n
=&, —>0

as n — oo (uniformly) for s on P,. By Exercises 4, Question 4, we
conclude that

lim [ €°F(s)ds=0 (¢t > 0).

n—oo P
n

Regarding the residues, we have

Res(0) =1,
coth 4/s
Res(—n’n?) = lim (s+n’n’)e" Tf
S——n°mw S
1. 6tS 1' S + nznz
= m —_— m ——
s——n2m? ﬁ s—>—n?x? tanh ﬁ
. e’ i 1
= m —_— m — 5 =
s—>—n?m? ﬁ s—>—n2m? ﬁg SeChZ\/g
_ Zefnznzt

Finally,
f()=L(F(®)
= i Res(—nznzj
n=0

o0
=1+2) ™™ (t>0)
n=1

What facilitated the preceding calculation of the inverse trans-
form was the judicious choice of the parabolas P,,. Herein lies the
difficulty in determining the inverse of a meromorphic function
F(s) that has infinitely many poles. The curves C, must straddle
the poles, yet one must be able to demonstrate that F(s) — 0 (uni-
formly) for s on C, as n — oo. This task can be exceedingly difficult
and may sometimes be impossible. It is tempting for practitioners
of this technique, when F(s) has infinitely many poles, not to ver-
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ify (4.12) for suitable C,,. This leaves open the possibility that the
resulting “inverse” function, f(t), is incorrect.

Remark 4.10. There are many other variations where F(s) involves
the quotient of hyperbolic sines and hyperbolic cosines. See Doetsch
[2], pp. 174-176, for further machinations involved with showing
Jo €°F(s)ds — 0 as n — oo via Lemma 4.1. Notwithstanding our
preceding caveat, we will assume in Chapter 5 that |, Gy e®F(s)ds — 0
as n — oo where required.

Branch Point. Consider the function

1
FO) = 7
which has a branch point at s = 0. Although the inverse Laplace
transform of F(s) has already been considered in (2.5), it is instruc-
tive to apply the methods of the complex inversion formula in this
case.
Consider the contour Cx = ABCDEFA, where AB and EF are arcs
of a circle of radius R centered at O and CD is an arc ¥, of a circle of
radius r also with center O (Figure 4.8).

Cr
A(zo + iy)

Tr

/F(ﬂfo —iy)

FIGURE 4.8
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For w = 4/s we take a branch cut along the nonpositive real axis
with —7 < 6 < 7 and consider a (single-valued) analytic branch
of w. Then F(s) = 1/4/s is analytic within and on Cg so that by
Cauchy’s theorem

6ts

—ds = 0.
|
Whence

1 Xo+iy ets ts

e 1
0= — C ds+ — —ds+f/ °_as
2701 Jyo—iy /8 2701 Jup /S 2771 Jpc /8

1 ers 1 ers 1 e
“ds+— | —=ds. (4.17)
s

+— | —=ds+— .
27 [, /s 271 Jpg /s 271 Jgr /s
For s = Re lying on the two arcs AB and EF, we have
1

[F(s)| = —,
NE

so that by Remark 4.2, part (ii), coupled with the argument used in
the proof of Lemma 4.1 to treat the portions of these arcs from A to
x = 0 and from x = 0 to F, we conclude that

ts ts

lim | S das=1im | Sds=o.

R—00 AB \/E R—00 EF \/E

Fors =re” on y,,

-7
1
= VZ/ " %49 — 0
T

as r — 0 since the integrand is bounded.

Finally, we need to consider the integrals along BC and DE. The
values of these integrals converge to the values of the corresponding
integrals when BC and DE are the upper and lower edges, respec-
tively, of the cut along the negative x-axis. So it suffices to compute
the latter. For s on BC, s = xe™, /s = /xe™? = i/x, and when s
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goes from —R to —7, x goes from R to v. Hence

ofs —T s et
—ds = / —ds = —/ —— dx
/BC\/E R /S RN

1 R e—tX
= - dx. 4.18
o (4.18)
Along DE, s =xe ™, \/s= xe 7 = x, and
es —R ets R e t*
—ds = / —ds = —/ —— dx
/DE \/g —r \/5 r _1«/?_(
1 R —tx
— - (4.19)

i) &

Combining (4.18) and (4.19) after multiplying each by 1/2mi gives

1 ets 1 ets 1 R e—tx
— | Zas+ Ay N f dx.
271 Jpe /s 271 o NG ), Jx

Letting R — oo and r — 0 in (4.17) yields

1 Xp+100 e 1 [ee) 6—1‘)6
b L[ [,
2mi Xp—100 \/_ T Jo \/z

in other words,
1 1 Xp+100 ets
H=°L'{—=)= —/ —d
1o <f> 211 Sy B

1 o0 e—tX
— [ e
T Jo \/?_C
To compute this latter integral, observe that by Example 2.1

F(%):/O.wi;;du:ﬁ.

Setting u = tx, du = tdx and

e[

1
f(f):;(

Therefore,

B
I
5-
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in accordance with (2.5).

Another useful example involving a branch point that arises in
the solution of certain partial differential equations (see Section 5.1)
is the determination of

—ay/fs
L1 (6 ), a > 0.
s

As in the preceding example, s = 0 is a branch point. Thus we can
use the same contour (Figure 4.8) and approach in applying the
complex inversion formula.

For w = /s we take a branch cut along the nonpositive real axis
and consider the (single-valued) analytic branch w; = /[s[¢?”’? with
positive real part.

Again, F(s) = ¢~%V5/s is analytic within and on Cy so that

61‘56—11\/5 ets—aﬁ
/ —ds = / ds = 0.
Cr § o S

Thus,
1 xo+iy etsfa\/g 1 etsfa«/g
270 Jyy—iy S 2mt Jag S
1 ets—av/s 1 els—ar/s
— as + — ds
2w Jpe S 2w J, S
1 efs—av/s 1 gts—av/s
— ds + — ds. (4.20)
2nt Jpp S 27t Jgr S

For s = Re? on the two circular arcs AB and EF, w; = /s =
VRe?? and

e—a\/g ¢—V/Rcos0/2 1
= < —
Is| Is|

IE(s)l =

and so as in the preceding example,

ts—a./s ts—as/s

. € . €
lim ds = lim
R—00 AB S R—>0o0 EF S

ds = 0.

For s on the line segments BC and DE, again we take them to be
the respective upper and lower edges of the cut along the negative
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axis. If s lies on BC, then s = xe”, /s = i/x, and when s goes from
—R to —7, x goes from R to r. Therefore,

ts—as/s —7 ts—as/s v —tx—ai/x
/ ¢ ds :/ ¢ ds =/ IR ) (4.21)
BC - R

S R S X

Along DE, similarly s = xe™™, /s = —i/x implying

ets—aﬁ R e—tx-‘raiﬁ
/ ds = f —dx. (4.22)
DE r

N X

Combining (4.21) and (4.22) after multiplying each by 1/2ni yields

1 R p—tx(pain/x _ p=aiy/x 1 Re™sinayx
( ) dv— » / —‘/_ dx.
v

— 4.23
2mi J, X b4 X ( )
Letting r — 0 and R — oo in (4.23), we obtain the integral
1 [ e *sinayx
- / elsinayx (4.24)
T Jo X

In Section 2.7 we introduced the error function

2 " .
erf(t) = ﬁ/o e " dx.

It can be shown that the integral in (4.24) can be written in terms of
the error function (see Theorem A.13), that is,

1 o0 ,—tX o3
— / ¢ Snavx a/x dx = erf (L> ;
T Jo X 2\/{

we shall use use latter expression.
Finally, for s = re* on y,, we can take the integration from m to
-7

’

_ _ 10 i0/2 .
1 ots a/s p 1 T tre a\/re iret®do
— § = — -
2mi J, s 27t J, ret?

e

1
- —— ae
2 — 21 -1

=-1

1 d 0 0/2
ol i
e a/re 4o
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forr — 0. We have used here the uniform continuity of the integrand
to pass the limit inside the integral.*
Whence, letting r — 0, R — 0o in (4.20) gives

1 Xo-+ioo etsfa\/g a
0=— ds + erf(—) —-1; (4.25)
271 Jyy—ioo S 24/t

in other words,

—a./s 1 X0+i00 ts—as/s
f =L (6 - ) = / C s

271 0 —i00 S

a

The function
erfc(t) = 1 — erf(t)

is called the complementary error function, and so we have by (4.26)

—as
I _ 4
L ( S ) = erfc <Zﬁ) . (4.27)

f(‘}” 9) _ etv‘zlefa\/?ew/z

*Since for fixed a, t,

is continuous on the closed rectangle 0 < r < r,, —7 < 0 < 7, it is uniformly
continuous there. Hence for ¢ > 0, there exists § = §(¢) > 0 such that

If(r,0)—f(r',0"N| < & whenever |(1,0)—(r,0) < é.
In particular,
If(r,0) —f(0,6)] < & whenever 0 <71 <3.
Then
‘/ﬂf(r, e)de—/ﬂf(o, e)de‘ < fﬂ If(r,6) — £(0,0)|d6 < 2me,

that is,

1}1301/%@, 0)do = /ﬂlig)lf(r, 0)do = /”f(o,e)de.
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Exercises

1. Using the method of residues (Theorem 4.3), determine the
function f(t) if the Laplace transform F(s) is given by

s S
(@) G-aG-D (a #D) (b) Goay
s? +a?
( ) (SZ 612)2 ( ) ( aZ)Z
&
(©) iy (s2+a%)3’
2. Show that

1 8 o (1) 2n—1
L7 —)= — i t.
(szcoshs) 2 2; Zn—l)z ( 2 )71
3. Verify formulas (4.15) and (4.16). [You do not have to verify that

lim | €°F(s)ds=0.]

n— 00
Cﬂ

4. Show that if P, is the parabola given in Example 4.9 and |F(s)| <
1/(n+ )7 — 0 uniformly on P, as n — oo, then

lim [ €*F(s)ds=0 (¢t > 0).

n—-oo P‘H
[Hint: Forx > 0,ie., v > (n+ %)2 7%, show that

|ds| = /(dx)? + (dy)* < V2dx

and hence,

/ €| |F(s)||ds| = 0 as n — oo.
Pa(x>0)

Forx < 0,ie, t* < (n+ %)2 7%, show that

1
|ds| < 23/2 (n + 5) 7 dr,
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and hence
/ €] |[F(s)| |ds| — 0 as n — oo.
Pr(x<0)
In this case, one also requires the fact that
m 2 2
f e ™dr = 0 as m— 00.]
0

5. Using the complex inversion formula, show that

£l <i) _ sinvr -y bs 0

T tl=v
Hence by (2.2) deduce the formula
') I'(l —v) =mcscom.

(Note: For v = 1/2, this is the branch point example.)
6. Determine L(erfc(v/1)).



 Partial
~ Differential
cuarrox  Dquations

Partial differential equations, like their one-variable counterpart,
ordinary differential equations, are ubiquitous throughout the sci-
entific spectrum. However, they are, in general, more difficult to
solve. Yet here again, we may apply the Laplace transform method
to solve PDEs by reducing the initial problem to a simpler ODE.
Partial differential equations come in three types. For a function
of two variables u = u(x, y), the general second-order linear PDE has
the form
*u 0*u 0*u p ou

a—s 4+ 2b—— +c— +
2 ox

au
+e—+fu=g 5.1
0x2 ox oy dy Y fu=g (-1

where a, b, ¢, d, ¢, f, g may depend on x and y only. We call (5.1)

elliptc ~ if b*—ac < 0
hyperbolic if  b* —ac > 0,
parabolic if  b?> —ac = 0.

’

<
>

Example 5.1.

(i) The heat equation
ou 0*u
— = C—
ot ox?
is parabolic.

175
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(ii) The wave equation

Fu L, 0%u
—_— = a"—
ot? ox?
is hyperbolic.
(iii) The Laplace equation
*u N Fu 0
W ay?

is elliptic.

Laplace Transform Method. We consider the function u = u(x, t),
where t > 01is atime variable. Denote by U(x, s) the Laplace transform
of u with respect to t, that is to say

o,0]
Ux,8) = L(u(x, 1) = / e Mu(x, t)dt.
0
Here x is the “untransformed variable”

Example 5.2.
( " ) e(lX
L)) = ——.
( )=5"4
We will assume that derivatives and limits pass through the
transform.

Assumption (1).

ou © g0
— | = S — ) dt
L <8x> /0 S u(x, t)

8 (o.¢]
= — e Su(x, t)dt
0x 0

a
= 0 U(x,s). (5.2)

In other words, “the transform of the derivative is the derivative of
the transform.”

Assumption (2).
oo

lim e Mu(x, t)dt = / e u(xo, t) dt, (5.3)
0

x=>x Jo
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that is,
lim U(x, s) = U(xy, 5).

X—> X0

In (5.2) it is convenient to write

8U S des au
—_— X = — = —
U = - Uks) =,

since our parameter s can be treated like a constant with respect
to the differentiation involved. A second derivative version of (5.2)
results in the expression

*u d*u
Ll—)=—.
(BXZ) ax?

Note that in the present context the derivative theorem (2.7)
reads

L (2—?) =sL(u(x 1) —u(x,0M)

=sU(x,s)—u(x,07).

The Laplace transform method applied to the solution of PDEs
consists of first applying the Laplace transform to both sides of
the equation as we have done before. This will result in an ODE
involving U as a function of the single variable x.

For example, if

du  du .
ot 4
then
(&)=< (%)
ox ot
implying
d +
— U(x,8)=sU(x,s) —u(x,0M). (5.5)

dx

The ODE obtained is then solved by whatever means avail them-
selves. If, say, u(x, 07) = x for equation (5.4), we find that the general
solution is given by

x 1
U(x,s) =ce™ + B + 2 (5.6)
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PDE problems in physical settings come with one or more boundary
conditions, say for (5.4) that

u(0,t) = t. (5.7)

Since the boundary conditions also express u as a function of ¢, we
take the rather unusual step of taking the Laplace transform of the
boundary conditions as well. So for (5.7)

1
U(0,s) = L(u(0,) = s_Z'
Feeding this into (5.6) gives ¢ = 0 so that
I X + 1
X,8)=—+ —.
(9 ="+ 3

Since this is the transform of the desired function u(x, t), inverting
gives the solution to (5.4) and (5.7) [(and u(x, 0") = «]:

u(x, t)y =x+t.

This simple example illustrates the basic techniques involved in
solving partial differential equations.

In what follows we will demonstrate the utility of the Laplace
transform method when applied to a variety of PDEs. However, be-
fore proceeding further, we require two more inverses based upon

(4.27):
—ay/s
e a
L! =erfc| — 0.
( S ) erfc (2\/?> , a >

Theorem 5.3.

. —1, —asy _ a —a’/4t
) £ (e )_—Zme (a > 0).

—as
(i) £~ ¢ =L e (a > 0).
NG Jmt

Proor. (i) Applying the derivative theorem to (4.27) and noting
that erfc (a/2+/t) — 0 ast — 0%, we have

a a
L=erfc|—)) =5
(dt erc(z«/?» °c
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that is,

8 (2\/% ea%t) = (5.8)

as desired.
For (ii), we differentiate (5.8) with respect to s,

4 p( ) e

ds 2/ t3 24/s
and by Theorem 1.34,

r (_ at e“z/‘“) _ _a@_“*/g

23/ t3 245

which after cancellation gives (ii). g

Example 5.4. Solve the boundary-value problem

0 0
P B_y + 8_3 + ay = bx?, x>0, t>0, a bconstants, (5.9)
x

y(0,6)=0,  ykx 0hH =o.
Setting E(y(x, t)) = Y(x, s) and taking the Laplace transform of both
sides of (5.9) give

n bhx?
xYe(x,8) +8Y(x,8) —yx,0")+a¥Y(xs) = =

that is,
ay sty bx?
x—+(s+a)Y = —
dx ( ) s’
or
ay (s+a) bx
—+——=Y=— (s>0).
L ( )
Solving this first-order ODE using an integrating factor gives
b 2
Y(x,8) = B a————C (x > 0,8 > —a).
s(sta-+2)

Taking the Laplace transform of the boundary condition y(0,t) = 0
gives

Y(0,8) = L(y(0,1)) =0,
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and thus ¢ = 0. Therefore,
bx?
Y(x8)=—"—,
s(s+a+2)

and inverting,
2

bx
N = 1 — 6—(a+2)t
y(x, 1) p 2( )

by Example 2.40.

One-Dimensional Heat Equation. The heat flow in a finite or
semi-infinite thin rod is governed by the PDE

ou 0*u

P— e C _’

ot ox?
where c is a constant (called the diffusivity), and u(x, t) is the temper-
ature at position x and time t. The temperature over a cross-section
at x is taken to be uniform. (See Figure 5.1.) Many different scenar-
ios can arise in the solution of the heat equation; we will consider
several to illustrate the various techniques involved.

Example 5.5. Solve

u ou 0 t>0 5.10
— =, x>0 t>0, )
ox? ot ( )

for

(D) ux0MH=1,x>0,

O TN
|
|

FIGURE 5.1
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(i) u(0,6)=0,t > 0,
(iii) Xlggo u(x, t) =1.

Taking the Laplace transform of (5.10) yields
42U
a2

Transforming the boundary conditions (ii) and (iii) gives

=sU—u(x,0")=sU—1. (5.11)

U(0,s) = L(u(0,1) =0,
lim U(x,s) = hm E(u(x 1) = ( lim u(x, 1)) = -
X—>00 X—> 00
Now (5.11) is an ODE whose solution is given by
1
Ux,s) = ¢ e¥¥ + e Vo 4 =
s
The boundary condition lim,_, U(x,s) = 1/s implies ¢; = 0, and
U(0, s) = 0 implies

1 eVsx
U(x,8) =—— .
s

S

x/24/t 7,
u(x,t) = erf<2ﬁ> \/_/ du.

Direct calculation shows that u(x, t) indeed satisfies (5.10) and that
the initial and boundary conditions are satisfied [cf. (2.49)].

By (4.26),

Example 5.6. Solve

u  du
— = —, x>0 t>0,
ox? ot
for
() u(x 0" =0,
(i) u(0,t) =f(0), t > 0,
(iii) Xlinglo u(x,t) = 0.
The transformed equation is
dz
— —sU =0,

dXZ
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whose solution is given by
Ux, s) = ¢y e V5%
in view of condition (iii). By (ii),
U(0,s) = L(f(1) = F(s),
so that ¢; = F(s) and
U(x, s) = F(s)e V™.

Invoking Theorem 5.3 (i) and the convolution theorem 2.39, we have

t
X —x%/4t
u(x, t) = e t —1)dr.
(0 /o AVE I )

Making the substitution o? = x?/4t, we find that
2 (™ : x?
u(x, t) = — e_"zf (t — —2) do,
b NG 4o
which is the desired solution.
Example 5.7. Solve
u  ou
— = —, O<x<{, t>0,
I

for
(D) u(x, 07) = uy,
(ii) a%u(o, )=0 (i.e., left end insulated),
(i) u(,t) =u.
Taking the Laplace transform gives
a’u
W =sU — uyg.
Then
U(x, s) = c¢; cosh o/sx + ¢, sinh /s x + %,
and by (ii), ¢; = 0, so that

u
U(x,s) = ¢1 cosh /s x + =
s
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We find by (iii) that
u u
UL, s)= —L = ¢ cosh/st + —0,
s s
and so
U — Up

G =——.
' scosh. /st
Therefore,

Ul s) = (ur — up) cosh /s x N U

s cosh /s ¢ s
Taking the inverse by (4.16) gives
cosh \/sx
1) = —u)LH [ ———=—
U ) = o+ (th — o) <s cosh \/EE)

—u + 4(ur — uo) i =" o~ (@n=1y'7" t/4¢
b4 7 (2n—1)

n=

Example 5.8. Solve

Pu  du
— = —, 0O<x<1, t>0,
ox2 ot

for

1) u(x 09 =f(x),
(i) u(0,6)=0,¢t > 0,
(iii) u(1,t)=0,t > 0.

Therefore,

2

au
W—SU:—)C(X)

Here we solve this ODE by the Laplace transform method as well.
To this end, let Y(x) = U(x,s). Then Y(0) = U(0,s) = 0, Y(1) =
U(1,s) = 0. Setting a* = s, we obtain

o*L(Y) — oY (0)— Y'(0) — a’L(Y) = —L(f) = —F(0),
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that is,
Y'(0) F(o)
ﬁ(Y) = P R— — g2
Inverting gives
Y’(0) sinh 1 [
Y(x)=U(x,s) = w - /0 f(uw)sinha(x — u)du
Y'(0)sinh /sx 1 f" )
=———— ¥ " | fwsinh/s(x — u)du.
NG N ) (x—w

Now, Y(1) = 0, implying

’ _ 1 ! .
Y'(0) = sinh\/E/O f(w)sinh /s(1 — u) du.

Thus,

! sinh /s xsinh /s(1 —w
Ux,s) = / g = B

* sinh \/s(x — u)

We can write fo1 = [+ f; and use the fact from Section 3.2 that

sinh(z & w) = sinh z cosh w =+ cosh z sinh w.

Then
D) — /xf(u) [sinh ff/xg ssllrrlll}ll 2(1 —u) sinh Jjéx — u)] i
R
- [t

sinh {/sxsinh /s(1 — u)
f f) /s sinh /s du
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To determine the inverse we use the complex inversion formula.
When it is applied to the first integral we have

1 [rotieo {/ fu )smh V8(1 — x) sinh /su

2mi Xo—i00 /s sinh /s
2.2

There are simple poles in this case at sy = 0 and s, = —n°nw
n=1,273,...(see Example 4.9).

sinh {/s(1 — x) sinh y/su

du} ds = X Res.

’

Res(0) = i du = 0.
es(0) = Tims [ fiw R u
Res(—nznz)
* sinh \/s(1 — x) sinh 4/su
=1 + : / d
s—)lr;gnl(s ' )6 0 f(u) \/Esinh\/g "

T s + n’m?  lim S/Xf(u)sinh Vs(1 — x) sinh /su J
s—>—n?m? smh\/_ s—>—n?n? ﬁ

g t/ flu sinh[(nmi)(1 — x)] sinh(nai)u T

cosh(nmi)

* sin[nm(1 — x)]sin nmu
— Ze—nzﬂzt/ f(u) [ ( )] du
—cosnm

where we have used the properties from Section 3.2 (for z = x + iy)

sinh z = cosy sinh x 4+ isiny cosh x,

coshz = cosycoshx + isinysinhx

to obtain the last equality.
Therefore,

o0 X
Z Res = 2 Z e T (f f(u) sin nmu du) sin nrx.
n=1 0

Similarly, the inverse of the second integral is given by

2 Z e (/ f(uw)sinnmu du) sin nmx.

n=
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Finally,

o0 1
u(x,t) =2 Z e (/ f(uw) sinnmu du) sin nmx.
n=1 0

The same result is obtained when we solve this problem by the
separation-of-variables method.

One-Dimensional Wave Equation. The wave motion of a string
initially lying on the x-axis with one end at the origin can be
described by the equation

Py _ 0%

R
(Figure 5.2). The displacement is only in the vertical direction and
is given by y(x, t) at position x and time t. The constant a is given
by a = «/T/p, where T is the tension on the string and p its mass
per unit length. The same equation happens to describe the longi-
tudinal vibrations in a horizontal beam, where y(x, t) represents the
longitudinal displacement of a cross section at x and time ¢.

x>0 t>0

Example 5.9. Solve

92 0?
—y:az—y, x>0 t>0
o2 x?

)
for

() yx,0M)=0,x >0,

e /\ /

FIGURE 5.2



5. Partial Differential Equations 187

(ii) y(x,07)=0,x > 0,
(iif) y(0,t) = f(1) (f(0) = 0),
(iv) Xli)rgo y(x,t) =0.

The transformed equation becomes
2

Y (%, 8) — sy(x, 01) — % y(x,0M) = azddx—f,
that is,
A’y s
T 5 V=0
Solving,
Y (%, 8) = 1€l D" 4 cpe™ /¥,
Since y(x,t) — 0 as x — oo, then ¢; = 0 and
Y(x,8) = cpe” D,
By condition (iii), Y(0, s) = .C(f(t)) = F(s), so that ¢; = F(s), and
Y(x,8) = F(s)e /9%,

Inverting via the second translation theorem (1.31) gives

yn ) = us(Of (1= =),

fe=2) t=
= [0

t <

or

QIR %

Thus, the string remains at rest until the time t = x/a, after which
it exhibits the same motion as the end at x = 0, with a time delay of
x/a.

Example 5.10. Solve
%y dy
a2 ax2’
for

() y(0,H)=0,t > 0,
@) yi¢,t)=a,t >0,
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(iii) y(x,07) =0,0 < x < ¢,
(iv) »(x,07)=0,0 < x < £.

By transforming the equation we obtain

ary v—o,
—_ S —
dx?

whose solution is given by
Y(x,s) = c; cosh sx 4 ¢, sinh sx.

Then 0 = Y (0, s) = ¢; and Y(x, s) = ¢, sinh sx. Moreover,
a .
Y(¢,s) = — =cysinh st
s

and ¢, = a/ssinh s¢. Thus,

v a sinh sx
X, 8) = —————.
(% 5) ssinh st

This function has simple poles at s,, = nwi/¢, n =0,%1,£2, .. ..

) s a sinh sx

Res(0) = limse® ————
5—0 ssinh st

x cosh sx

im———
s—0 £ cosh sf

Forn = +1,%2,---,

nmi ) nmi\ €° sinh sx
Res|— | =a lim (s— — | ——
£ s> 1 L ssinh s¢
(s—2) . ¢Psinhsx

S— % Slnh SE S— % S

nmit/ o; nmix
a e sinh 7

- £ cosh nri nmi/ L

_ _( 1);1 nmt/@
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Therefore,

nmwx
yx, t) = Z Res = — + Z( 1)71 it/ g 7

n;ﬁO

>0 nmx nmt
E sin —— cos —
|

by the complex inversion formula.

Exercises

1. Solve the boundary-value problem
ay 1y
ax x Ot

y(x,0) =%  y0,t)=0.

2. Solve the following heat equations.

Pu_ 0, t>0
= x>0, )
@) W ot
(D) u(x,01)=0, x>0,
(i) u(0,6)=6(t), >0,
(iii) lim u(x,t) =0.
X—> 00

=t, x>0 t>0

’

(b)%_z—l:, x>0 t>0,
(D) ux 0 =uy, x>0,
(i) u(©0,t)=u;, >0,
(iii) xli)r& u(x, t) = up.
(c)azu:a—u O<x<l1 t>0
w2 at' ' '

(1) u(x0t)=0, 0<x<l,
(ii) u(0,6)=0, >0,
(i) u(1,6)=1, ¢>0.
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ou

= —, O<x<¥{ t>0
()sz ot

’

(1) u(x, 0" =ax, 0 < x < ¢ (aconstant),
(i) u(0,H)=0, >0,
(iii) u(f,H)=0, t> 0.

3. Solve the following wave equations.

%y dy
()atzzﬁ’ O0<x<1, t>0,
(D) y(x, 0M) =sinmx, 0<x<1,
i) y(0,6)=0, >0,
(iii) y(1,H=0, t>0,
(v) y(x,0)=0, 0<x<1.
82
(b) atzza_xzz/’ O<x<1, t>0,
(i) y(x,01)=0, 0<x<l,
Gi) y(1,H)=1, >0,
(iil) yx(0,6)=0, >0,
(iv) y(x,0") =0, 0<=x<1.
d*y
()8t2:ﬁ’ 0<X<1,t>0,
(i) y(x,07)=0, 0<x<l,
(ii) y(0,t)=0, >0,
(iii) y(1,6)=0, t >0,
(iv) y(x,0") =% 0<x<1.
02 0?
(d)%:a—g, 0<x<1, t>0, for
X

(l) y(x, 0+) Zf(X), x>0,
(11) y 0,H)=0, >0,
(111) y1,H=0, >0,
(IV) Ui(x, 0+) =0, O0<x<l.

(Note: This problem is similar to Example 5.8.)
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4. Solve the boundary-value problem
0 0°
—yz—y—sinrrx, 0<x<1, t>0,
o> o2
for
D yx0hH =0 0<x<1,
(i) y(0,66=0, >0,
(iii) y(1,6)=0, t >0,
(iv) »(x,01) =0, 0<=x<1.
5. A “fundamental solution” to the heat equation satisfies

ou  ,0%u
— =a" —, x>0 t>0 a>0,
ot ox?
for
(D) u(x,0M) =48(x), x >0,
0
(iv) a—u(o,t) =0, t>0,
X
(iii) lim u(x,t) =0.
X—> 00

Solve for u(x, t). (See Exercises 2.5, Question 7.)



Appendix

The sole integral used in this text is the Riemann integral defined
as follows.
Let

A={a=ty<tp <---<t,=Dhb}

be a partition of the interval [a, b]. Let f be a function defined on
[a, b] and choose any point x; € [ti—1,t], i =1,---,n. The sum

D fet = tim)
i=1

is called a Riemann sum. Denote by ||A]l = max;<ij<,(ti — ti—1).

The function f is said to be Riemann integrable if there is a number
I such that for any ¢ > 0, there exists a § > 0 such that for each
partition A of [a, b] with ||A]l < 8, we have

D et —ti) — | < &,
i=1

193
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for all choices of x; € [ti—1,t], i = 1,---,n. The value I is the
Riemann integral of f over [a, b] and is written as

b
Iy = f f(t) dt.

It is worth noting that if f is Riemann integrable on [a, D], it is
bounded on [a, b]. Moreover, every continuous function on [a,b] is
Riemann integrable there.

In order to see just how dangerous it can be to pass a limit inside
an integral without sound justification, consider the following.

Example A.1. Let {f,} be a sequence of functions defined on [0, 1]

by

) 1
4n“t 0<t<—
n
) 1 1
(=3 —4n“t+4n — <t < —
n n

1
0 —<t<l1

n

(Figure A.1). Since f,(0) = 0, lim,,,( f,(0) = 0. Moreover, for t > 0
andn > 1/t, f,(t) = 0, implying

limfu() =0,  t€[0,1].

2
2 fi
i 1
0 . ow 1 ! FIGURE A.1
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By construction,

1
[
0

so that lim,,_, fo1 fo(t)dt = 1. On the other hand,

1 1
/ lim f,(t) dt :f 0dt = 0.
0 n—oo 0

In Theorem 3.1 it was shown that the Laplace transform of a
piecewise continuous function of exponential order is an analytic
function. A necessary ingredient in that proof was that the Laplace
transform be continuous.

Theorem A.2. Iff is a piecewise continuous function, and

/ ” e Yf(t)dt = F(s)

0
converges uniformly for all s € E C C, then F(s) is a continuous function
on E, that is, for s — sy € E,

o0

lim e f(tydt = / lim e™S'f(t) dt = F(s).
0 $7%

s=>8 Jo

Proor. By the uniform convergence of the integral, given ¢ > 0
there exists some t, such that for all t > ¢,

/ ” e Vf(t)dt| < e, (A1)

for all s € E.
Now consider

f ~ e () dt — / ” e ()t

0 0

= ‘ /0 oo(e*“ — e (D dt

to
- / e — e (0] di +
0

f oo(e*“ — e ONf(t)dt

In view of (A.1), the second integral satisfies
oo (0]
/ (e™ — e ™Of (D) dt / e Nf () dt
to to

< e+4+¢e=2e.

<

+ /f h e Nf(t) dt

0
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For the first integral,

to to
/ le™ —e™™ |f(D)|dt < M/ le™s" — e %' dt
0 0

since f is piecewise continuous, hence bounded on [0, fy]. Finally,
le™s" — e~ can be made uniformly small for 0 < t < t; and s
sufficiently close to sp,* say

1
e —e % <« — &,
Mt
Hence
to
/ le™ —e | |f(D)]dt < e,
0
and so
o0 o0
lim e Sf(dt = / e~ (1) dt. =
s=>s0 Jo 0

A more subtle version of the preceding result which was used in
the proof of the terminal-value theorem (2.36) is the following.

Theorem A.3. Suppose that f is piecewise continuous on [0, 00) and
L(f (t)) = F(s) exists for all s > 0, and fooo f(t)dt converges. Then

lim Ooe—sff(t) dt = / h f(t)adt.
0

s—07F 0

PrOOF. Since fooo f(¥)dt converges, given ¢ > 0, fix 7y sufficiently
large so that
o0
/ f(t)dt
Next consider

o o
/ f(dt —/ e f(t)dt

0 0

sfo (l—e‘s)lf(t)ldt+/m (1 — e 9If (Ol di.

£ A2

= ] / Ta - ey

*We are using the fact that the function g(s, t) = ™ is uniformly continuous on a
closed rectangle.
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For the first integral, since f is piecewise continuous it is bounded
on [0, 7o), say If (t)| < M. Then

/to(l _ e—st)|f(t)| dat < M/ro(l — 6_St) dt
0 0

M(sty +e 5% — 1
= ( 0 + ) —>
s

0

as s — 0T by an application of 'Hopital’s rule. Thus the first integral
can be made smaller than ¢/2 for s sufficiently small.
For the second integral

/‘a—e%wmms/ Flde <

To

by (A.2). Therefore,

fo h fat — fo b e Sfadt

for all s sufficiently small, proving the result. a

< é&

Corollary A.4. Suppose that f satisfies the conditions of the derivative
theorem (2.7), L(f'(1)) = F(s) exists for all s > 0, and lim,_,« f (1)
exists. Then

lim ” e () dt = /oof’(t) dt.
0

s—0t Jo

ProoF. Note that f’ is piecewise continuous on [0, 00) and as we
have shown in the proof of Theorem 2.36 [namely, equation (2.47)],
the existence of lim,_, « f(¢) implies that fooo f'(t)dt converges. The
result now follows from the theorem. O

Even though a function is only piecewise continuous, its integral
is continuous.

Theorem A.5. Iff is piecewise continuous on [0, 00), then the function

g@=ﬁﬁ@w

is continuous on [0, 00).
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¢
0 o to+h
N\
FIGURE A.2

Proor. Assume that t; is a point of discontinuity of f (Figure
A.2). Then for h > 0,

to+h
g(to +h) —g(to) = / f(w) du. (A.3)

Since f is piecewise continuous, f is bounded on (ty,ty + h), say
If| < M there. Thus we find that

/;ﬁh f(u)du

as h — 0. In view of (A.3), we obtain

lim g(to + h) = g(to).
h—0+

to+h
<M/ du=Mh — 0 (A4
to

Similarly,
Hm g(ty + 1) = g(to)
for ty > 0.
If t is a point of continuity of f, the proof is the same. ]

The justification of applying the Laplace transform method to
solving ODEs is aided by the fact that the solution will be continuous
of exponential order and thus possess a Laplace transform.

Theorem A.6. For the nth-order, linear, nonhomogeneous ordinary
differential equation

any(n) + an—ly(nil) +etay = f(t)r (AS)

ap, ai, ..., ay constants, if f (t) is continuous on [0, 00) and of exponential
order, then any solution is also continuous on [0, 00) of exponential order.
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Proor. We give the proof for n = 2 as the proof for higher-order
equations follows similarly.
For

ay’ + by’ +cy =f(1),
the general solution yj;, to the corresponding homogeneous equation
ay” + by’ + cy = 0 is given by
Yn = C1th + C2l2,

where y;, y, are two linearly independent solutions (of the
homogeneous equation) of the prescribed form (cf., e.g.,Zill [16])

(i) er]ty enflzl"
(ii) ™, te™,
(iii) e cosbt, e* sin bt.
Since each of these terms has exponential order, y;, does also and
is continuous on [0, 00).
A particular solution y, of (A.5) can be found by the method of
variation of parameters (Zill [16]). Here y,, takes the form

Yp = ith + U2Y2,

where
;o _yzf(t) /o ylf(t)
ul - T MZ - s
aw(y]ryz) aW(yl:yZ)
and W (y1,yz) is the Wronskian
Y1 Y2
W, y2) = |, sl Ny, — Yhy2 # 0.
1 Y92

In cases (i), (i), (iii), W(y1, y2) can be determined and seen to be of
the form Me?" and hence so is W~!(y1, y2). Since the product of func-
tions of exponential order also have exponential order [Exercises
1.4, Question 1(ii)], we conclude that u} and u, have exponential
order and are continuous on [0, 00). The same holds for u; and u;, by
Remark 2.11 and likewise for y,,.

Finally, the general solution of (A.5), given by

Y=Un +ypr

is continuous and has exponential order, as desired. a
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Remark. Let us show that for n = 2, the Laplace transform method
is indeed justified in solving (A.5) under the conditions stipulated.
In fact, not only is y = yn + y,, continuous and of exponential order
on [0, 00), but so is

Y =y, +Y, =Y+ Wy +wmyy + wryr + way)),

and hence also y” = (1/a)(f(t) — by’ — cy). The hypotheses of The-
orem 2.12 are clearly satisfied, and the Laplace transform method
can be applied.

In general, the continuity of

yO,y M-y

for t > 01is a basic a priori requirement of a unique solution to (A.5)
(see Doetsch [3], p. 78).

A useful result in dealing with partial fraction decompositions is
the following

Theorem A.7 (Fundamental Theorem of Algebra). Every polyno-
mial of degree n,

p(2) = a2 +an 12"+ -+ arz + ao, a, # 0,

with complex coefficients, has exactly n roots in C, with the roots counted
according to multiplicity.

Corollary A.8. Any two polynomials of degree n that are equal at
n + 1 points are identically equal.

This is so because the difference of the two polynomials is itself
a polynomial of degree n and therefore can vanish at n points only
unless it is identically the zero polynomial, in which case all the
coefficients must be zero. Thus the two polynomials have identical
coefficients.

The Riemann-Stieltjes integral was introduced in Section 2.5 in
order to deal with the Laplace transform of the Dirac distribution.
It enjoys properties similar to those of the conventional Riemann
integral.
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Theorem A.9.

D If fab fdg, and fab fdg, both exist, and ¢ = ¢, + @, then f is
(Riemann-Stieltjes) integrable with respect to ¢ and

/:fdw=/abfd<m+/:fd<pz.

i) If ["fide and [’ frdg both exist and f = fi + fo, then f is
integrable with respect to ¢ and

fabfdgo - fabﬁdfp T fabfzdsﬂ.

(iii) If fab fdy exists, then for any constant c,

b b
g =c [ sd.

Gv) If [/ fdp and | " flg exist, a < ¢ < b, then fab fdy exists and

/jfdso = [ e+ /bedw

The proofs are a natural consequence of the definition of the
Riemann-Stieltjes integral.

Theorem A.10. If f, ¢, ¢ are continuous on [a, D], then fah fdy exists
and

b b
/ F(yd(t) = f T

Proor. Given ¢ > 0, we need to show that

<e¢ (A.6)

n b
Y Fele(t) — e(t-1)] — f f¢' 0 at
j=1 a

for A = max;(t,—t;_) sufficiently small. By the mean-value theorem,
we can express the left-hand side as

D f@e) = e(t-0]= ) F05) ¢ € — t-1) (A7)
j=1 j=1

for some §; € [tj_1, t;]. The right-hand side is nearly what we require.
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Since f is continuous on [a, b], let |[f(t)| < M, t € [a, b]. Now ¢’ is
continuous on [a, b] and hence uniformly continuous there. Conse-
quently, there exists some § > 0 such that whenever |§ — ;| < §, it
follows that

0'(§) — ¢'()l < (A.8)

&
2M(b —a)’

Since f¢' is Riemann integrable, for any suitably fine subdivision of
[a, b], with A < §, we have

n b
> fEe -0 - [ fodmal < a9
j=1 a
From (A.8) we get
D FEDIE) — @I — 6-1)
j=1
< ZM’ZM@_ 56| = (A.10)

Finally, taking (A.9) and (A.10) together, with &;, x; € [tj_1,¢], and
with the triangle inequality, gives

< €.

b
')(tj—tj—l)_/ fO' Bt

In view of (A.7), we have established (A.6). o

In order to reverse the order of integration, as in Theorem 1.37,
we use the next result.

Theorem A.11. If f(x,t) is continuous on each rectangle a < x < b,
0<t<T, T >0, except for possibly a finite number of jump disconti-
nuities across the linest =t;, i =1,...,n, and if fooo f(x,t)dt converges
uniformly for all x in [a, D), then

/ab/()oof(x,t)dtdx:/Ooo/abf(x,t)dxdt.
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Proor. From the theory of ordinary integrals we have

T prb b T
/ / f(x, t)dxdt = f / f(x, t)dtdx,
0 a a 0
implying

/Ooo/abf(x, ) dxdt = rlir?o/ab/orf(x’ t)dt dx. (A.11)

For the other integral

f;/ooof(x,t)dtdx:/ab/()rf(x,t)dtdxqt/ab/roof(xlt)dtdx_

(A.12)
Since fooo f(x,t)dt converges uniformly, given any ¢ > 0, there exists
T > Osuch thatforallz > T

‘/roof(x, ) dt

for all x in [a, b]. Hence for t > T,

/abfroof(x,t)dtdx

lim /abfroof(x,t)dtdx=O.

T—>00

<

€
b—a'

<eg,

that is,

Letting T — oo in (A.12),

/abfooof(x,t)dtdx:/(;Oofabf(x,t)dxdt

via (A.11). O

Note that the hypotheses are satisfied by our typical integrand
e Mf(t), where f is piecewise continuous of exponential order.

The following general theorem tells when taking the derivative
inside an integral such as the Laplace integral, is justified.

Theorem A.12. Suppose that f(x,t) and d/9x f(x,t) are continuous
on each rectanglea < x < b, 0 <t < T, T > 0, except possibly for a
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finite number of jump discontinuities across the linest = t;,i=1,...,n,
and of the two integrals

o0 oo 3
F(x)z/o f(x, t)ydt and /(; af(x,t)dt;

the first one converges and the second one converges uniformly. Then

d * 9
EF(X) =/0 5]”()@ tydt (a < x < D).

Proor. Let
> 9
G = — t) dt.
() A oo fan

Then G is continuous as in the proof of Theorem A.2 and employing
Theorem A.11 gives

/:G(u)du: /le/;m%f(u,t)dtdu

:/OOO/HX%f(u,t)dudt

=A [F(, ©) — f(a, D] dt

= F(x) — F(a).

Therefore,

d > 9
- F() =G0 = fo - fx D -

A consequence of the preceding theorem which was useful in
Chapter 4 follows.

Theorem A.13.
1 [®e ™ sina a
L[ () e
T Jo X 2\/?
Proor. Denote the left-hand side by y(a, t), so that by setting x = u?,

2 (% e~ ginau
yan==[] ——au
T Jo u
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In view of Theorem A.12 we can differentiate under the integral sign
so that

By 2 o — 2
—=— e " cos(au)du = — Y(a,t). A.13
= /0 (@) du= = Y(a,0 (A13)
Now,
2 (o.¢]
e e~ sinau
Y(a,t) = e " cos(au)du = ———
0
2t [ e
— e usin(au) du
a Jo
2t 9Y
a da’
or
v a
ba 2t '
where Y(0,t) = /7/2/t by (2.49). Solving gives
T _d
Y(a,t)= £ € .
24/t
Therefore, by (A.13),
ay 1 2
— = —0¢e %,
da . /mt
and since y(0,t) =0,
1 @ w2
at) = —— e dw
ya ) = —= /0
2 /a/Z\/E )
= — e " du
V7 Jo
a
=erfl— ),
(ZJ?)
since we substituted u? = w?/4t. O

Theorem A.14 (Fourier Inversion Theorem). Suppose that f and
f’ are piecewise continuous on (—o0,00), that is, both are continu-
ous in any finite interval except possibly for a finite number of jump
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discontinuities. Suppose further that f is absolutely integrable, namely,

/OO If(®)dt < oo.

o0

Then at each point t where f is continuous,

f(t) = % /_ ” eMF (L) dn, (A.14)

oo
where
o0 .
F(A) = / e ™M) dt
—00
is the Fourier transform of f. At a jump discontinuity t, the integral in
(A.14) gives the value

D+
> :

For a proof of this exceptionally important result, see for example,
Jerri [6], Theorem 2.14.
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Tables

Laplace Transform Operations

F(s) | £
C1E1(8) + CaF2(s) cLfi(t) + c2fa(t)
1 t
F(as) (a > 0) ;f (;)
F(s—a) ef(t)
e “F(s) (az=0) ua(Of (t —a)
sF(s)—f(01) f'(6)
$*F(s) — sf(0F) — f'(07) 1
S"F(s) — s"7If(0%) — s"7*'(0T) FO)
_— f(ﬂ—l)(0+)
du foyde
S 0
F'(s) —tf(1)
FU(s) (D"
& 1
/ F(x) dx n f(6)
F(s)G(s) /(; f(me(t —n)dr
lim s F(s) hr(l)f}r fH=f(0")
lim s F(s) Lim £(5)

209
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Table of Laplace Transforms

F(s) f(®
1 8(1)
1
- 1
s
1
S_Z t
tn—l
— =1,2,3,...
s" (n=123..) (n—1)!
tvfl
— (v>0)
sY I'(v)
(S _ 1)7’1 B B t dn .
s n=01,2..) Ln(t)_aﬁ(t”e )
Laguerre polynomials
1 eat
s—a
1 1
_(66U _ 1)
s(s—a) a
1 # b eat _ ebl‘
(s—a)(s—Db) (@7 D) a—>b
s 4 ae* —be”
—_— a —
(s—a)(s—Db) ( ) a—b
s
S (1+at)e™
(s —a)
a 1 at
— sina
SZ + 612
s
m cos at
a bt s
_ e” sinat
(s — b)? + a?
—b
> e’ cosat

(s —b)?* + a?
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F(s) ft)
a
2 2 sinh at
s’ —a
s
2 2 cosh at
s’ —a
a
W e’ sinh at
S — —a
s—b
W e cosh at
S — —a
1 1
(s2+ az)z_ ﬁ(sm at — at cos at)
s 1 .
(s +—a2)2 Z(t sin at)
s 1
(s2+ az_)z Z(sm at + at cos at)
3
s . _
(52 + az_)z cosat — 5 atsimat
s — a?
(SZ + az)z t COS at
1 1 _
—(sz — 2y Z—@(at cosh at — sinh at)
s

1
—(t sinh at
Za( )
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() £
s? 1
(s2 — a?)? Z(sinh at + at cosh at)
$3
(s2 — az)z_ coshat + % at sinh at
2 2
o > t cosh at
(s2 — a2)?
ab 2 5 asin bt — b sin at
2 (52 + 12 (a” # b%) T
(s> + a®)(s* + b?) a
- (@1 |  cosht—cosat
(SZ + az)(sz + bZ) a2 — b2
2 _ .
5 2 ) asinat — bsin bt
2 (52 + 12 (a” # b%) o
(s> + a®)(s* + b?) a
s° 2 4 a® cosat — b* cos bt
a
(SZ + aZ)(SZ + bZ) ( ) az — bZ
ab ) ) bsinh at — a sinh bt
G- CF e
5 2 ) cosh at — cosh bt
(s — a?)(s2 — b?) (a® # b%) prRN
s* ) ) asinh at — b sinh bt
2 2N/ <2 2 (a® # D7) p 5
(s> — a*)(s* — b?) az—b
s° a’® cosh at — b? cosh bt
(a2 #1?)

(82 — a?)(s* — b?)

a’ — b2
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F(s) f®
a t L s t
s* (s + a?) T
a? 1
(2 a) P sinhat —t
1 B
Vs Jrt
1 e
JVs+a Jrt
1 1
ita 7z orvan
1 efbt _ 67&[
VJs+a++/s+b 2(b—a)Vntd
1 5 t
sv/5 n
1 1 £ Jar
(s — 5 Ja© e
1 at L 7, bt
Siath e (\/ﬁ be erfc(b«/?))
1
1
SZ — aZ Io(at)
/2 2 _ Q\V
: SJ;%ZS) v > -1 a'J, (af)
= stz_—azaz)” (v>-1 a’I,(at)
1 N V=3
Fray 7Y o (3a) It
1 STt V=3
F-ay 77 o (z) i)
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F(s) f®
(Vs2+a?—s)” (v>0) vf Ju(at)
(s —+st—a%)’ (v>0) . I,(at)
1
Js—a—s—Db — (e — e
2t/mt ( )
e s cos 2+/at
NG Jt
ea/s sin 2+/at
S/ Jra
efa/s t v/2
SIS (v>-1) (Z) Ju(2v/at)
e—avs 0 =@ /At
a >
NG ( ) =
e S (a > 0) L
24/ t3
e=as . a
a>0 erfc | —
s @9 (ZJZ)
g~kvsitar 0 0<t<k
/24 2
s'ta Jo(avTZT—K3) t>k
g~kvsi—a? 0 0<t<k
2_ 2
s md I(avt? —k2)  t>k
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F(s) f®
e (a>0) 84(1)
—as
(a >0) Uq(t)
2 N 2 2
e/ erfo— — e
2 b4
1 e % t vr .
RT— = e z ([t] : greatest integer < t)
1 e 21 al—1
= a
s(es—a) s(1—ae™®) ( ) a—1
S _ _ 5,8
e —1 1—e 4l

s(e* —a) N s(1 —ae™5)
f()
a

|

|

11— '

1 H H
_ o a 2a 3a 4a t
S(1 —e™%)

f(t)
11+ —

1 S
_ o a 2a 3a 4a t
S(1 + e %)

F(¢)
14 — — —

1 L

B — o a 2a 3a 4a 5a ¢
S(1 + e%)
f(t)
14 —_— —_—
! ! 3a 4a !
1—e™% o a 2a ' ' 5a  t
—1 [E—

S(eas + 6—(18)
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F(s) f®
o)
1
1—e™* 1 as a 2a a 4a :
a-e7 = —tanh — Sl ’
s(1+e %) s 2
ﬂt;y\/\/
__ p—as ) )
e L am® A e e
as*(1+e%)  as? 2

1—(1+as)e ™
as?(1 — e=29s)

w
(SZ + 0)2)(1 _ 6fns/w)

w 1478 . w cothns
2+ w2 \1l—e7v0) 24 2 20w
o s+ a
& s+b

—(logs+y)

(y: Euler constant)
s

3. t

el
el

logt
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F(s)

f®

log s
s

| s? 4 a®

O —_—

& s% + b2

tan™! (Z)
s

sinh xs
ssinh as

sinh xs
scosh as

cosh xs
ssinh as

cosh xs
scosh as

sinh xs
s2sinh as

sinh xs
s% cosh as

cosh xs

s2sinh as

cosh xs
s% cosh as

sinh x/s
sinh ay/s

—(logt+ )

2
?(cos bt — cosat)

1.
—sinat
t

x 2 (-1 nmx nmt
-+ — Z u sin—— cos—
a 7 n a a

n=1

(—1)r! 2n—1 . (2n—1
Z sin X SIn mt
T 2n—1 2a 2a

n=1

i(—l)” nax | nmut

COS—— S1In——
a a

xt  2a n* | nmx | nat
I o G
a 7 —~ n a a
8a <~ (-1 2n—1 2n—1
X —l— — Z ) sin X COS mt
“ (2n —1)? 2a 2a
1(, , a (— 1) nmt
— x4+t = — T os
2a< 3 712 21 n? a a

G 2n—1 o (2n—1
t—l——z(zn s( a )mcsm( a )nt

nix
Z( 1)'ne —n’n’t/a’ s'n—
n=1



218 Tables

F(s) f(®
cosh /s T 2n—1
Vs o Z(_l)n—1(2n _ 1)6—(2n—1)2n2t/4a2 cos X
coshay/s a’ — 2a
sinh x./s 2 i(—l)”_le_(zn_l)z”zt/‘mz sin 2n—1 o
J/scoshas/s a “— 2a
cosh x/s 1 + Z( 1ye I nmc
J/ssinh ay/s a
sinh x\/s x, 2 Z (— 1) G-ttt g TR
ssinh ay/s a a
cosh x\/s 12 4 i (-1 -1/ 2n—1 .
scosh ay/s T A= 1Zn—l 2a
sinh x\/s xt  2a* S (—1)" nmx
: \/_ =Lt Z (=1 (1— e—nznzt/az) sin
s?sinh ay/s a 7w = nd a
cosh x./s —a’ e 164> 3 (-1 -1t/ 2n—1 .
s cosh ay/s 2 73 "(2n—1)3 2a



Answers to Exercises

Exercises 1.1.

4 1
L@ 5 (d) —
28 1 S
) 550 D~ Fra
1 1
(@)~ 2 ® o0z
—as 1+ —ns/w
® = my 2
2 2% e 7D
@ E B S s—1
1 (e’ 1 1 ,
2. @ (% —S+ 1) (b) S0 - e 5)?

Exercises 1.3.
1. f(t) is continuous except at t = —1.

2. g(t) is continuous on R\{0}, and also at 0 if we define g(0) = 0.

219
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. h(t) is continuous on R\{1}, with a jump discontinuity att = 1.
. i(t) is continuous on R.

3

4

5. j(t) is continuous on R\{0}.

6. k(t) is continuous on R\{0}, with a jump discontinuity att = 0.
7

. I(t) is continuous except at the points t = a, 24, 34, . .., where it
has a jump discontinuity.

8. m(t) is continuous except at the points t = a, 2a, 34, . . ., where it
has a jump discontinuity.
Exercises 1.4.
1. (i) cafi + cof; is piecewise continuous, of order max(e, B).
(ii) f - g is piecewise continuous, of order o + B.
Exercises 1.5.

1. (a) Yes. No.

Exercises 1.6.

1 2 n 3 + 12
T8 (s—2) s249
s% — 2w 2>
3. (a) ——— _
(@) s(s2 — 4w?) (b) s(s? — 4w?)
3s —
4, 2
( n Zn s ( n Zn+1 _ w
5. Z SZn-H - sz+a)2' Z 82n+2 - s2 4 @2
2w? s2 + 2w?
6.

s(s? + 4w?)’ s(s? + 4w?)

1
7. log (1 + —)
8

8. Z( 1)n+1< >2n:%10g(1+2)_22>
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9. No.

Exercises 1.7.

2. (a) N(t):{é:ég

(There are many other examples.)
(d) f(t) = 0 is the only continuous null function.
o0

3. (b) f() =) tha(D)-
n=0

Exercises 1.8.

2
L A e ® oy
t V2
(C) th 64 (d) m

(e) 3 ¢ 'sin2t

e (cosh(Z«/Et) _ 3 sinh(Zﬁt))

2v/2
(cosB)(s+ a) — (sinf)w
(&) (s+a)* + w?
() e'(1-15
e 2 —m/Z —7s
2. (a) — ®) o © 57 ¢
3. (a) % uz(t)(t —2)? (b) E — uy(t) cos(t — a)
(c) — \/_ U,(t) sinh (x/_(t — 1))
Exercises 1.9.
s+ o’ ws
- @ G (b) wz)z
2s(s* — 3w?) Za)(Zs — w?)
© e rwry NS
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2 sint
3. (a) ?(cos bt — cos at) (b) —
a 67a2/4t
2ta/mt
Exercises 1.10.
et ebt 1 L e
1. (a) s (b) s¢ " +5¢
() —1+¢ +t% (D) bZ 57—z (cosat —cos bt)

1
€) ———(cosh bt — cosat S 42t L — 3¢+ L

a’ + b? 2

(@3¢ '+ 2te" —3cost+ sint —ftsint

3
(h)%_%e?)t_i_%eﬁlt_%e t
2. The answer for both parts (a) and (b) is

asinh at b sinh bt csinh ct

@ =)@ =) (B - )P~ ) (@ —aS — b

Exercises 2.1.

2. @ L (b) 2 ©-27 @Y

VT (b) Uz (1)
Vs—3 St =2)

(c)%t”zem (d) e—t

( 1)n+lt2n 1 1 —cost
(©) Z n(z2n — =2 ( t )

n=1

e

283/2

3. ()

®

Exercises 2.2.

1. (a) e
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2.

1—e™% 1 as
—— | = —tanh —
» () :
1—e® —qgse™™
()

asz(l — e2a5)

1—e™% 1 tanh as
J— = —— tanh —
O as2 1+eas as? 2

1
S(1 +e™45)

3. f(t) =u(t) + 2352, (1) "thna()

F Diann &
S) = —tann —
(8) S 7

o0

. F(S) — % Z(_l)n(e—as(Zn—H) _ 6—2(18(”—‘1‘1))

n=0

f = Z(—l)n(“(ZnJrl)a(f) — Uza(n1)(1))
n=0

®)
S
Graph of f(1) : | 3a 4a
(@] a 2a l l

1 [—

Exercises 2.3.

5.

6w>
@ 9 1 o)
8(s* + 7w?)
(b)

(s? + 90?)(s? + w?)

6. Use induction.

S5a t

7. f(t) = ' where [t] = greatest integer < t.

Exercises 2.4.

1. (a)y——

(¢' + cost —sint)
1
3t

1
(b)y % _1t+1)+7—t
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(©) y:—sint——sinZt+cosZt
(d)y=—1t6+13 3t+%2 —t
(© y:—mcost—%smt——e — St 2
(€3) y:t—1+26_t—u1(t)[t—2+e_t+]]
(8 y= ;[t sint + u,(t)(t — m) sin(t — m)]
(h) y= lcost—i— L _t—i—%et

2. (a) y = (—1/2))tcos At 4 cos At + mwsin At
(b) y=1t/A*+ cosit + (1/ +1/23) sin At.

3. (a) I(t) = (Eo/R) + (I — E¢g/R) e R/E

—2t

(b)

4. I(t) = (Eo/R) — ((Eo/R) + AR/(L*&* 4+ R%))e™R/E

+(AR/(L2w2 + R%)) cos wt + (ALw/(L*w?* + R%)) sin wt
5. I(f) = & sint 4+ +-cost — 3¢ 4+ Ze™¥
6. (a) x()=e X +¢!
yH=e*—e
(b) x(t) =t +sint
y(t) =t +cost
(©) x(H)=t+e "' —
yit)y=e "' —t
7. (@) y(t) = —1+Ct
() y() =t+Ce’

(_l)ntl’l+1
() y® = Zm
(d) y()=te™

Exercises 2.5.
1. y(t) = smh V2t
2. x(t) = (1/~km) sin <V k/m t)
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3. I(t) = (1/L)e R/E

4. x(H)=te ™"

Exercises 2.6.

£ 1 —
1. (a) 0 (b)f(0+)={éif,’§>g
(cya—->b
2. (@) 0 (b) 1
Exercises 2.7.
1. (@) 3(¢' —e ™) (b) 1 —cost (c) t —sint
(@ L2t-D+5 @2+ 1)
(e) s(tsint — t? cost)
Ja
6. (a) (1/Va) erf(at) (b) G
Ja(3s + 2a)
© 2+ ayp?
00 (_1);1a2nt2n+1
7. (@) w()]o(t — 1) ®) 2 o Dy
8. n/2
10. (a) 1+ Zsin (§t> ¢/?
(b) —icost+ Zsint+ Le*
() 0
(d) 6—(11‘
11. (a) i(sint+tcost)
(b) Same as for 7(b) witha =1
12. 1 (& —e ) f(t —1)de

Exercises 2.8.

1.

(@) 2e' + 3¢ —2¢! () ;¢ —1e ' —Ssint

1t 1 -2t 1,3t 1 5
(c) =3¢ +55¢ "+ 556 +3t+ 5



226 Answers to Exercises

V7 1 V7
4, Le 2l cos —t— —sin —t | + L(sint — cost
3 2 7 2 5 ( )

Exercises 2.9.

4. (a) a, = 3" — 4" (b) a, = %(Zn _ 411)
(©)a, = %[1 - (D" (da,=n

6. () y(t) = Y hlo(—1)e ™ (b) y(H) = Sl (t — n)"+2/(n+ 2)!
7.0, =4+2n—7-2" 4 3"F!

Exercises 3.1.

1. (@) 8+1 (b) 24 +18i (c) £ — %4
2. (@) |Q1+D% =2v2, arg((l+1)°) =3n/4
Re((1+1%) =-2, Im((1+1)?°) =2

1—1 3
_1 _—
(®) ‘ 1 ' arg(1+i) 2

4 [ 4 [
Re( +3.l)=1, Im( +3.l)=2
2—1 2—1

3

() 11 +0* =2, arg((1+1*) = >

Re((1+9*) =0, Im((1+0*)=2".
3. (@) (1+1)° =242¢7 (d) (44 3i)/(2 — i) = J/Beta '@



Answers to Exercises 227

7. (a) lz—1] <1

O T

T 3
(©) ) < arg(z) < DX lz| <1

Y

8. ()i =1/V2+1i/V2 ()1 (n=041,42,..)
(©)—1(n=0+142..) (d) (1/2) — (v/3/2)i

9. (a) V/—1=¢i,e7, e7 &7
(b) Vi=¢"5 €% &f = —i

’
- - -9 17 - 251 - 331
(€) V1+i= V2en, V2en, 2ew, V2w, 2ew

Exercises 3.2.

2. (a)in (b) 1 +1(37/2)
(c) in/2
3. (a) e7™? (b) ¢

(©) (1 +1i)e ™ eiloe?
Exercises 3.3.

1. (a) 2mi (b) 2mi ()0
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(d) i (e) 0 () 0
(g) 2mi(2 — cos 1) (h) 7i(—247* + 6)
(a) —in ) (1 + (7/2)) +i(1 — n)

IFA0) < 120

Look at 1/f(2).
Look at f(z)/¢€*.

NS b

Exercises 3.4.

1. (a)R=1 (b) R = 00
(c)R=1 ()R =0
2. (@) ¢ =Y, z"/nl, R=o0
(b) sinhz =Y z""/2n+1), R=o00
(©) 1/Q-2)=),2,2" R=1
(@) log(1+2) =32, (-1)"2""/(n+1), R=1

4. (a) z=0 (simple pole)
z = =i (poles of order 2)
(b) z =0 (pole of order 3)
(c) z=0 (essential singularity)
(d) z=1 (removable singularity)

2 7z* 1 1 72%

5. @145+ 5 M L-1+%
22
@1-3+535

6. (a) —3 5 X (—1)"2 = p 3, /3
(b) —5 + 4 X (~ 1) /2" = 13 2 /3
(€) —3; + 1 Xt (12 4 5 302, 37/

7. (a) Res(xia) =1/2
(b) Res(0) =1/2

(2n—-1) . i
Res| ——mi )| = —— n=0,=%1,£2,...
a (Zn—-1)m

(c) Res(0) =0
8. (a) —2mi (b) O (c) 6mi
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(d) —4mi (e)0

2w
9. ——
7

Exercises 4.

1. (a) (1/(a —Db))(ae* —beM) (b) ¢ (5 at* + 1)
(c) 5 tsinat (d) t coshat
(e) 3 (3tsinat + at? cosat)

6. 1/4/s+1(v/s+1+1)

Exercises 5.
1. y(x,t) = x(t — 14 2¢7")
2. (a) u(x, ) = (&/2/7td) e /H

(b) u(x,t) =up + (u1 — up) erfc (x/Z\/%)

(©) u(x, t) =x+ (2/m) 00, ((—=1)"/n) e sin nmx

(d) u(x,t) = (2at/m) 20, (1) /n) e 7 sin(nmx/ )
3. (a) y(x,t) =sinmxcosmt

2n—1

(b)) y(x, t) =14 (4/7)> 0, (2;1_)11 cos( 21 )mx cos (2 )t
(©) y(x, 1) = (2/7%) Y52, (1) /n?) sin nmx sin nxt

(D yx, =232, <f01 f(w) sin nu du) sin nzx cos nit

4. y(x,t) = ((sinmx)/7*)(cos t — 1)
5. u(x, t) = (1/a/mh)e /4t



Index

Analytic functions, 123
Argument, 117
Asymptotic values, 88

Bessel function, 72, 97, 213, 214
Beta function, 96
Boundary-value problems, 64
Branch

cut, 122

point, 123, 167
Bromwich

line, 152

contour, 152

Cauchy
inequality, 134, 145
integral formula, 133
residue theorem, 143
-Riemann equations, 123
theorem, 131

Circle of convergence, 137

Closed (contour), 128

Complex

inversion formula, 151

numbers, 115

plane, 117
Complementary error function,

172

Conjugate, 116
Continuity, 8

piecewise, 10
Contour, 128
Convergence, 2, 6

absolute, 6

uniform, 7, 20
Cycloid, 101

De Moivre's theorem, 117
Derivative theorem, 54
Difference equations, 108
Differential equations, 59
Differentiation
of Laplace transform, 31
under the integral sign, 203

231
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Index

Diffusivity, 180
Divergence, 2
Dirac operator, 74, 210, 215

Electrical circuits, 68, 83
Elliptic equations, 175
Equation of motion, 85
Error function, 95
Euler
constant, 44, 47
formula, 3, 117
Excitation, 61
Exponential order, 12

Fibonacci equation, 114
First translation theorem, 27
Forcing function, 61
Fourier
inversion formula, 205
series, 163
transform, 151
Full-wave-rectified sine, 51, 216
Fundamental theorem of
algebra, 200
Functions (complex-valued),
120

Gamma function, 41

General solutions, 63

Greatest integer < t, 109, 113,
215

Half-wave-rectified sine, 50,
216
Harmonic
function, 126
conjugate, 126
Heat equation, 175, 180
Heaviside
expansion theorem, 107

function, 25, 79, 215
Hyperbolic

equations, 175

functions, 121

Impulsive response, 104
Imaginary

axis, 117

number, 116

part, 116
Independence of path, 132
Indicial response, 105
Infinite series, 17, 44
Initial

point, 128

-value theorem, 88
Input, 61
Integral equations, 98
Integrals, 66
Integration, 33, 128
Integro-differential equations,

67

Jump discontinuity, 8
Kirchoff's voltage law, 68

Laplace
operator, 126
transform (definition), 1, 78
transform method, 60, 176
transform tables, 210
-Stieltjes transform, 78
Laurent series, 139
Lerch’s theorem, 24
Linearity, 16
Liouville’s theorem, 134
Logarithm, 122, 216, 217

Mechanical system, 84
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Meromorphic function, 141 -Stieltjes integral, 75, 201
Modified bessel function, 102, Roots

213, 214 of unity, 118
Modulus, 116 of a complex number, 118

Multiple-valued function, 120
Second translation theorem, 29

Null function, 26 Simple
contour, 128
One-dimensional pole, 38, 141
heat equation, 180 Simply connected, 130
wave equation, 186 Sine integral, 67
Order (of a pole), 141 Single-valued functions, 120
Ordinary differential equations, Singularities
59 essential, 141
with polynomial coefficients, pole, 141
70 removable, 141
Output, 61 Smooth (contour), 128

Square-wave, 49, 215
Steady-state solutions, 103
Systems of differential
equations, 65
Superposition principle, 106

Parabolic equations, 175
Partial
differential equations, 175
fractions, 35
Partition, 75, 193

Periodic functions, 47 Tautochrone, 100
Positive direction, 128 Taylor

Polar Form, 117 coefficients, 138
Pole, 141 series, 138
Power series, 136 Terminal
Principal logarithm, 122 point, 128

-value theorem, 89

Radius of convergence, 136 Translation theorems, 27

Real part, 116

Residue, 38, 142 Uniqueness of inverse, 23
Response, 61 Unit step function, 24, 79, 215
Riemann

integrable, 193 Wave equation, 176, 186

integral, 194
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Isaac: The Pleasures of Probability.
Readings in Mathematics.

James: Topological and Uniform
Spaces.

Janich: Linear Algebra.

Jénich: Topology.

Kemeny/Snell: Finite Markov Chains.

Kinsey: Topology of Surfaces.

Klambauer: Aspects of Calculus.

Lang: A First Course in Calculus. Fifth
edition.

Lang: Calculus of Several Variables.
Third edition.

Lang: Introduction to Linear Algebra.
Second edition.

Lang: Linear Algebra. Third edition.

Lang: Undergraduate Algebra. Second
edition.

Lang: Undergraduate Analysis.

Lax/Burstein/Lax: Calculus with
Applications and Computing.
Volume 1.

LeCuyer: College Mathematics with
APL.

Lidl/Pilz: Applied Abstract Algebra.
Second edition.

Logan: Applied Partial Differential
Equations.

Macki-Strauss: Introduction to Optimal
Control Theory.

Malitz: Introduction to Mathematical
Logic.

Marsden/Weinstein: Calculus I, II, I1I.
Second edition.

Martin: The Foundations of Geometry
and the Non-Euclidean Plane.

Martin: Geometric Constructions.

Martin: Transformation Geometry: An
Introduction to Symmetry.

Millman/Parker: Geometry: A Metric
Approach with Models. Second
edition.

Moschovakis: Notes on Set Theory.

Owen: A First Course in the
Mathematical Foundations of
Thermodynamics.

Palka: An Introduction to Complex
Function Theory.

Pedrick: A First Course in Analysis.

Peressini/Sullivan/Uhl: The Mathematics
of Nonlinear Programming.

Prenowitz/Jantosciak: Join Geometries.

Priestley: Calculus: A Liberal Art.
Second edition.

Protter/Morrey: A First Course in Real
Analysis. Second edition.

Protter/Morrey: Intermediate Calculus.
Second edition.

Roman: An Introduction to Coding and
Information Theory.

Ross: Elementary Analysis: The Theory
of Calculus.

Samuel: Projective Geometry.
Readings in Mathematics.

Scharlau/Opolka: From Fermat to
Minkowski.

Schiff: The Laplace Transform: Theory
and Applications.

Sethuraman: Rings, Fields, and Vector
Spaces: An Approach to Geometric
Constructability.

Sigler: Algebra.

Silverman/Tate: Rational Points on
Elliptic Curves.

Simmonds: A Brief on Tensor Analysis.
Second edition.

Singer: Geometry: Plane and Fancy.

Singer/Thorpe: Lecture Notes on
Elementary Topology and
Geometry.

Smith: Linear Algebra. Third edition.

Smith: Primer of Modern Analysis.
Second edition.

Stanton/White: Constructive
Combinatorics.

Stillwell: Elements of Algebra:
Geometry, Numbers, Equations.

Stillwell: Mathematics and Its History.

Stillwell: Numbers and Geometry.
Readings in Mathematics.

Strayer: Linear Programming and Its
Applications.

Thorpe: Elementary Topics in
Differential Geometry.

Toth: Glimpses of Algebra and
Geometry.

Readings in Mathematics.



Troutman; Variational Calculus and Whyburn/Duda: Dynamic Topology.
Optimal Control. Second edition. Wilson: Much Ado About Calculus.
Valenza: Linear Algebra: An Introduction
to Abstract Mathematics.





