(3 Hours)

Total Marks: 80

- 1. Question No.1 is compulsory.
- 2. Answer any three from remaining questions.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if required.

Q1. Attempt any four.

- a Explain the effect of temperature of on VI characteristics of a PN junction diode. 05
- b What are the important parameters of a JFET? How these parameters are determined graphically?
- c What is Early effect? Explain how it affects the BJT characteristics in CB configuration.
- d For the circuit shown in figure.1 draw the output waveform. Assume diode is ideal.

Fig.1

e For the FET shown in figure.2 the drain current equation is

$$I_{DQ} = 9 \left(1 + \frac{V_{GSQ}}{3}\right)^2$$
 mA, Determine I_{DQ} , V_{GSQ} , V_{DSQ} , V_D

 $V_{DD}=20V$, $R_{D}=2k\Omega$, $R_{S}=1.5k\Omega$, $-V_{SS}=-10V$.

Fig.2

05

- Q2. Describe the construction and operation of an N-channel MOSFET in enhancement mode. Draw its characteristics and equivalent circuit of the device.
 - 10
 - Describe the different MOSFET biasing techniques . Determine the drain current, 10 drain to source voltage, and Power dissipated in the transistor of CS circuit with an N-channel E MOSFET shown in figure 3. $R_1 = 30k\Omega$, $R_2 = 20k\Omega$, $R_D = 20k\Omega$ $20k\Omega$, $R_S = 0.5k\Omega$, $V_{DD} = 5V$, $V_{TN} = 1V$, $k_N = 0.1mA/V2$

Fig.3

- Q3. Draw input and output characteristics of CE amplifier. Explain graphical analysis to determine parameters.(Zi, Zo, AV, and Ai)

 - 10 In the Common Emitter configuration with voltage divider bias $I_E = 1mA$ $V_{CE}=2V$, $R_E=1k\Omega$ and eta=49 . Determine the values of R_C , R_1 and R_2 such that the stability factor does not exceed 5. Assume $V_{\rm CC}=5V$ and $V_{\rm BE}=0.3V$.
- For the amplifier shown in figure.4 analyze and determine Q4.

10

- i) Small-signal hybrid pi parameters of BJT
- ii) Small-signal voltage gain
- Input and output impedance.

The circuit parameters are: $R_1=56k\,\Omega$, $R_2=12.2k\,\Omega$, $R_E=0.4k\,\Omega$, $R_C = 2k\Omega$, $R_L = 10k\Omega$, $V_{CC} = 10V$ and BJT parameters are $\beta = 100, V_{BE} = 0.7V$

Fig.4

- b Draw JFET CS amplifier with voltage divider bias and derive the expressions for the voltage gain, input impedance and output impedance.
- Q5 a For the amplifier shown in figure.5 derive the expression for voltage gain, input 10 and output impedance. The parameters of the MOSFET in the circuit shown in fig .5 are; $R_G = 1M\Omega$, $V_{DD} = 5V$, $-V_{SS} = -5V$, $V_{TN} = 0.8 V$, $k_N = 0.85 mA/V^2$
 - (i) Determine the values of R_S and R_D such that I_{DQ} =0.1mA and maximum symmetrical 1V peak sinusoidal signal occurs at output.(ii) Find the small signal transistor parameters. (iv) Determine the small-signal voltage gain A_V

- b Draw the circuit diagram of Wein Bridge Oscillator and derive the expression for the frequency of oscillation and minimum gain required for sustained oscillation
- Q6 Write a short note on following 20
 - a Twin-T Oscillator.
 - b Varactor Diode (Construction and operation)
 - c D C load line concept in BJT. Why Q point should be at the middle of DC load line and fixed?
 - d MOS capacitor
