QP Code: NP-18628

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions out of remaining five.
- (3) Figures to the right indicate full marks.
- Assume suitable data if required and mention the same in answer sheet.
- Solve any five :—

20

- Explain effect of temperature on characteristics of PN junction diode.
- Why LC oscillators are preferred for high frequency applications?
- (c) Find R_B and R_C for the circuit shown to obtain $V_{CE} = 5V$ and Ic = 2mA

Fig. 10

- (d) In n-channel MOSFET $V_{DS} = 5V$, $V_{GS} = 5V$, $V_{BS} = 0$, $W = 10 \mu m$, $L = 5 \mu m$, k'n=100 mA/ V^2 and $V_{TO} = 1V$. Calculate its drain current for channel length modulation factor λ of 0 and 0.25 V⁻¹.
- (e) Draw and explain small signal hybrid-Pi model of BJT including early effect.
- (d) Differentiate between BJT and MOSFET.
- 2. (a) Find I_{CQ} and V_{CEQ} for the circuit shown in figure 2a if $\beta = 100$

TURN OVER

Con. 9839-14.

- (b) Draw and explain energy band diagram of MOS capacitor in accumulation, depletion 10 and inversion region.
- 3. (a) Draw and explain working of transisterized Wien Bridge Oscillator.
 - (b) The JFET shown in figure 3b has parameters $I_{DSS} = 8mA$ and $V_p = -4V$. Determine V_G , 10 I_{DSQ} , V_{GSQ} and V_{DSQ} .

- 4. (a) For the common gate circuit shown in figure 4a, the NMOS transistor parameters are 10 $V_{TN} = 1V$, kn = 3 mA/V² and $\lambda = 0$.
 - (i) Determine I_{DSQ} and V_{DSQ}
 - (ii) Calculate gm and ro
 - (iii) Find the small-signal voltage gain $A_V = \frac{v_0}{v_i}$. Assume Cc_1 and Cc_2 acts as short circuit for small-signal analysis.

20

- (b) The parameters of the transistor in the circuit shown in figure 4b are $\beta = 100$ and $V_A = 100$ V. 10
 - (i) Determine the dc voltages at base and emitter terminals.
 - (ii) Find Rc such that $V_{CEQ} = 3.5V$ and
 - (iii) Assuming C_c and C_E act as short circuit, determine small-signal voltages gain

$$Av = \frac{v_0}{v_s}.$$

Fig 4b

- 5. (a) Derive expression for voltage gain of NMOS source follower circuit.
 - (b) For the common base amplifier shown in figure 5b, derive expression for voltage 12 gain, current gain, input resistance and output resistance using hybrid- π model.

- 6. Write short notes on any three:—
 - (a) Series and shunt clippers
 - (b) Twin-Toscillator
 - (c) MOSFET operation
 - (d) Construction and operation of varactor diode.

Con. 9839-14.