QP Code: 14553

20

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

- (2) Attempt any three from remaining questions.
- (3) Assume suitable data if required and mention the same in answer book.

1. Attempt any five:—

(a) The PNP transistor shown in Fig la has β =50. Find the value of Rc to obtain Vc = +5V. What happens if transistor is replaced with another transistor having β =100.

- (b) Draw small signal model of JFET and explain significance of each parameter.
- (c) Why common collector amplifier is used as buffer. Why buffers are required.
- (d) Write down current equation of diode and explain significance of each parameters.
- (e) For the circuit shown in Fig le. Find I_{DS} and V_{DS} if $V_{RS}=1.5$ V.

GN-Con: 6460-14.

[TURN OVER

QP Code: 14553

- (f) Compare Collpit's and Clapp's oscillator.
- 2. (a) Explain working of n-channel EMOSFET with the help output characteristics, showing clearly effect of channel length modulation. Given equation of drain current in linear and saturation current along with conditions.
 - (b) Design JFET circuit with voltage divider biasing as shown in Fig 2b with JFET parameters $I_{DSS}=12\text{mA}$, $V_P=-3.5\text{V}$ and $\lambda=0$. Let $R_1+R_2=100\text{K}$, $I_{DSQ}=5\text{mA}$ and $V_{DSQ}=5\text{V}$.

- 3. (a) Draw circuit diagram of common emitter amplifier with voltage divider bias with bypassed emitter resistance and derive expression for voltage gain, current gain, input resistance, output resistance using hybrid- π model which includes early effect.
 - (b) In n-channel E-MOSFET
 - (i) Substrate doping $N_A = 10^{16}$ cm⁻³
 - (ii) Polysilicon Gae doping N_D=10²⁰ cm⁻³
 - (iii) Gate oxide thickness tox = $0.5 \mu m$
 - (iv) Oxide positive charge interface density=4x10¹⁰cm⁻²
 - (v) Charge of electron = $1.6 \times 10^{-19} \text{col}$
 - (vi) Permittivity of free space \in =8.85x10⁻¹⁴ F/cm.
 - (vii) Lielectric constant of Si=11.9
 - (viii) Dielectric constant of $Si0_2 = 3.9$

Find zero bias threshold voltage (V_{TO})

10

55

Explain the working of wien-Bridge Oscillator. Derive the expression for frequency of Oscillation and the value of gain required for sustained oscillation.

For the circuit shown in Fig 4b, assume $\beta=100$. (b)

10

- Find thevenin's equivalent voltage V_{TH} and resistance R_{TH} for base circuit.
- Determine I_{CQ} and V_{CEQ}

- Draw a required diode clamper circuit to generate the output v_o to from the input v₁ 10 as shown in Fig 5a if
 - $V\gamma = 0V$
 - $V_{\gamma} = 0.7 \text{V}$. Where V_{γ} is cutin voltage of diode.

QP Code: 14553

- (b) What are different biasing techniques used to bias D-MOSFET and E-MOSFET. 10 Explain with the help of appropriate circuit diagrams.
- 6. Write short notes on any four:—

20

- (i) Hybrid-π model of BJT
- (ii) Twin-T oscillator
- (iii) AC and DC load line.
- (iv) Construction and operation of photodiode.
- (v) MOS capacitor.